日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ax3+ +4,(a≠0,b≠0),則f(2)+f(﹣2)=

          【答案】8
          【解析】解:∵f(x)=ax3+ +4
          ∴令g(x)=f(x)﹣4=ax3+ ,
          則由于定義域?yàn)镽關(guān)于原點(diǎn)對稱且g(﹣x)=﹣(ax3+ )=﹣g(x)
          ∴g(x)為奇函數(shù)
          ∴g(﹣2)=﹣g(2)
          ∴f(2)﹣4=﹣(f(﹣2)﹣4)
          ∵f(2)+f(﹣2)=8.
          所以答案是:8.
          【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)奇偶性的性質(zhì)和函數(shù)的值,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法即可以解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】 某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式為大于的常數(shù)),現(xiàn)隨機(jī)抽取件合格產(chǎn)品,測得數(shù)據(jù)如下:

          尺寸

          質(zhì)量

          對數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計(jì)量的值如下表:

          (1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

          (2)按照某項(xiàng)指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品,現(xiàn)從抽取的件合格產(chǎn)品中再任選件,記為取到優(yōu)等品的件數(shù),試求隨機(jī)變量的分布列和期望.

          附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的離心率為 為該橢圓的右焦點(diǎn),過點(diǎn)任作一直線交橢圓于兩點(diǎn),且的最大值為4.

          (1)求橢圓的方程;

          (2)設(shè)橢圓的左頂點(diǎn)為,若直線分別交直線兩點(diǎn),求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若,求曲線在點(diǎn)處的切線方程;

          (2)討論函數(shù)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)是定義在R上的奇函數(shù),且在區(qū)間(0,+∞)上是單調(diào)遞增,若 ,△ABC的內(nèi)角滿足f(cosA)<0,則A的取值范圍是(
          A.( ,
          B.( ,π)

          C.(0, )∪( ,π)
          D.( , )∪( ,π)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)不等式-2<|x-1|-|x+2|<0的解集為M ,a,b∈M .

          (Ⅰ)證明:||<;

          (Ⅱ)比較|1-4ab|與2|a-b|的大小,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】動(dòng)點(diǎn)A(x , y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是 ,則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是(
          A.[0,1]
          B.[1,7]
          C.[7,12]
          D.[0,1]和[7,12]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解學(xué)生完成數(shù)學(xué)作業(yè)所需時(shí)間,某學(xué)校統(tǒng)計(jì)了高三年級學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時(shí)間介于30分鐘到90分鐘之間,圖5是統(tǒng)計(jì)結(jié)果的頻率分布直方圖.

          (1)數(shù)學(xué)教研組計(jì)劃對作業(yè)完成較慢的20%的學(xué)生進(jìn)行集中輔導(dǎo),試求每天完成數(shù)學(xué)作業(yè)的平均時(shí)間為多少分鐘以上的學(xué)生需要參加輔導(dǎo)?

          (2)現(xiàn)從高三年級學(xué)生中任選4人,記4人中每天完成數(shù)學(xué)作業(yè)的平均時(shí)間不超過50分鐘的人數(shù)為,求的分布列和期望.

          查看答案和解析>>

          同步練習(xí)冊答案