日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)計(jì)算.
          (2)若,求的值.

          (1);(2)

          解析試題分析:(1)利用對(duì)數(shù)恒等式、換底公式、對(duì)數(shù)的運(yùn)算性質(zhì)進(jìn)行計(jì)算;(2)首先對(duì)已知等式進(jìn)行平方求得的值,再對(duì)其平方可求得的值,最后代入所求式即可求得結(jié)果.
          試題解析:(1)原式=


          (2) ∵,∴,∴,
          ,∴,
          ∴原式
          考點(diǎn):1、對(duì)數(shù)的運(yùn)算性質(zhì);2、對(duì)數(shù)的換底公式;3、指數(shù)的運(yùn)算性質(zhì).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=-x+log2.
          (1)求f()+f(-)的值.
          (2)當(dāng)x∈(-a,a],其中a∈(0,1),a是常數(shù)時(shí),函數(shù)f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=x∈[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3的最小值為h(a).
          (1)求h(a);
          (2)是否存在實(shí)數(shù)m、n同時(shí)滿足下列條件:
          mn>3;
          ②當(dāng)h(a)的定義域?yàn)閇nm]時(shí),值域?yàn)閇n2m2]?若存在,求出mn的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          若函數(shù)f(x)對(duì)任意的實(shí)數(shù)x1,x2D,均有|f(x2)-f(x1)|≤|x2x1|,則稱函數(shù)f(x)是區(qū)間D上的“平緩函數(shù)”.
          (1)判斷g(x)=sin xh(x)=x2x是不是實(shí)數(shù)集R上的“平緩函數(shù)”,并說明理由;
          (2)若數(shù)列{xn}對(duì)所有的正整數(shù)n都有|xn+1xn|≤,設(shè)yn=sin xn,求證:|yn+1y1|<.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某市對(duì)排污水進(jìn)行綜合治理,征收污水處理費(fèi),系統(tǒng)對(duì)各廠一個(gè)月內(nèi)排出的污水量噸收取的污水處理費(fèi)元,運(yùn)行程序如下所示:請(qǐng)寫出y與m的函數(shù)關(guān)系,并求排放污水150噸的污水處理費(fèi)用.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          心理學(xué)家通過研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問題所用的時(shí)間相關(guān),教學(xué)開始時(shí),學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力, x表示講授概念的時(shí)間(單位:min),可有以下的關(guān)系:
          (1)開講后第5min與開講后第20min比較,學(xué)生的接受能力何時(shí)更強(qiáng)一些?
          (2)開講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
          (3)若一個(gè)新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時(shí)間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)概念?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

          (1)求關(guān)于的函數(shù)關(guān)系式;
          (2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí),取得最大值?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          上海某化學(xué)試劑廠以x千克/小時(shí)的速度生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),為了保證產(chǎn)品的質(zhì)量,需要一邊生產(chǎn)一邊運(yùn)輸,這樣按照目前的市場(chǎng)價(jià)格,每小時(shí)可獲得利潤(rùn)是元.
          (1)要使生產(chǎn)運(yùn)輸該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于3000元,求x的取值范圍;
          (2)要使生產(chǎn)運(yùn)輸900千克該產(chǎn)品獲得的利潤(rùn)最大,問:該工廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤(rùn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)為常數(shù)).
          (Ⅰ)求函數(shù)的定義域;
          (Ⅱ)若,,求函數(shù)的值域;
          (Ⅲ)若函數(shù)的圖像恒在直線的上方,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案