(本小題滿分10分)選修4-1幾何證明選講
如圖,AB是O的直徑,BE為圓0的切線,點c為
o 上不同于A、B的一點,AD為
的平分線,且分別與BC 交于H,與
O交于D,與BE交于E,連結(jié)BD、CD.
(I )求證:BD平分
(II)求證:AH•BH=AE•HC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知點P是⊙O外一點,PS、PT是⊙O的兩條切線,過點P作⊙O
的割線PAB,交⊙O于A、B兩點,與ST交于點C,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,AD是⊙O的直徑,AB是⊙O的切線,M, N是圓上兩點,直線MN交AD的延長線于點C,交⊙O的切線于B,BM=MN=NC=1,求AB的長和⊙O的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
在極坐標(biāo)系中,已知兩點O(0,0),B(2,
).
(Ⅰ)求以OB為直徑的圓C的極坐標(biāo)方程,然后化成直角坐標(biāo)方程;
(Ⅱ)以極點O為坐標(biāo)原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
(t為參數(shù)).若直線l與圓C相交于M,N兩點,圓C的圓心為C,求DMNC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)選修4-1:幾何證明選講
如圖所示,已知與⊙
相切,
為切點,
為割線,弦
,
、
相交于
點,
為
上一點,且
(1) 求證:;
(2) (2)求證:·
=
·
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com