日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點F2與拋物線C2y2=4x的焦點重合,橢圓C1與拋物線C2在第一象限的交點為P,|PF2|=
          5
          3
          ,求橢圓C1的方程.
          分析:根據(jù)拋物線的方程,求出焦點坐標(biāo),然后求出橢圓的坐標(biāo),通過定義建立方程,化簡即可得到橢圓C1的方程.
          解答:解:∵拋物線C2y2=4x的焦點坐標(biāo)為(1,0),∴點F2的坐標(biāo)為(1,0).
          ∴橢圓C1的左焦點F1的坐標(biāo)為F1(-1,0),拋物線C2的準(zhǔn)線方程為x=-1.
          設(shè)點P的坐標(biāo)為(x1,y1),由拋物線的定義可知|PF2|=x1+1,
          |PF2|=
          5
          3
          ,∴x1+1=
          5
          3
          ,解得x1=
          2
          3

          y12=4x1=
          8
          3
          ,且y1>0,得y1=
          2
          3
          6

          ∴點P的坐標(biāo)為(
          2
          3
          2
          3
          6
          )

          在橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          中,c=1.
          2a=|PF1|+|PF2|=
          (
          2
          3
          +1)
          2
          +(
          2
          3
          6
          -0)
          2
          +
          (
          2
          3
          -1)
          2
          +(
          2
          3
          6
          -0)
          2
          =4

          a=2,b=
          a2-c2
          =
          3

          ∴橢圓C1的方程為
          x2
          4
          +
          y2
          3
          =1
          點評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查拋物線的幾何性質(zhì),考查橢圓的定義,考查待定系數(shù)法的運(yùn)用,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點分別為F1、F2,其中F2也是拋物線C2:y2=4x的焦點,M是C1與C2在第一象限的交點,且|MF2|=
          5
          3

          (1)求橢圓C1的方程;
          (2)已知菱形ABCD的頂點A,C在橢圓C1上,對角線BD所在的直線的斜率為1.
          ①當(dāng)直線BD過點(0,
          1
          7
          )時,求直線AC的方程;
          ②當(dāng)∠ABC=60°時,求菱形ABCD面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的一條準(zhǔn)線方程是x=
          25
          4
          ,其左、右頂點分別是A、B;雙曲線C2
          x2
          a2
          -
          y2
          b2
          =1
          的一條漸近線方程為3x-5y=0.
          (1)求橢圓C1的方程及雙曲線C2的離心率;
          (2)在第一象限內(nèi)取雙曲線C2上一點P,連接AP交橢圓C1于點M,連接PB并延長交橢圓C1于點N,若
          AM
          =
          MP
          .求
          MN
          AB
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          2
          2
          ,直線l:y=x+2
          2
          與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切.
          (Ⅰ)求橢圓C1的方程.
          (Ⅱ)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
          (Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)與雙曲線C2:x2-
          y2
          4
          =1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點,若C1恰好將線段AB三等分,則b2=
          0.5
          0.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•汕頭一模)已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點分別為F1、F2,右頂點為A,離心率e=
          1
          2

          (1)設(shè)拋物線C2:y2=4x的準(zhǔn)線與x軸交于F1,求橢圓的方程;
          (2)設(shè)已知雙曲線C3以橢圓C1的焦點為頂點,頂點為焦點,b是雙曲線C3在第一象限上任意-點,問是否存在常數(shù)λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案