日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)

          (I)解不等式;

          (II)求函數(shù)的最小值.

           

          【答案】

          (Ⅰ);(Ⅱ).

          【解析】

          試題分析:(Ⅰ)先將函數(shù)寫成分段函數(shù)的形式,根據(jù)分段函數(shù)的解析式作出函數(shù)的圖像,然后求出直線與函數(shù)圖像的交點(diǎn)坐標(biāo)為,利用數(shù)形結(jié)合的思想可知的解集;(Ⅱ)找到函數(shù)圖像的最低點(diǎn),求出最低點(diǎn)的縱坐標(biāo)即可.

          試題解析:(Ⅰ)令,則有,

          則作出函數(shù)的圖像如下:

          它與直線的交點(diǎn)為.

          所以的解集為:.                  6分

          (Ⅱ)由函數(shù)的圖像可知,

          當(dāng)時(shí),函數(shù)取得最小值.                  10分

          考點(diǎn):1.分段函數(shù)的解析式及其圖像;2.絕對值不等式;3.數(shù)形結(jié)合思想

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平行四邊形OABC中,已知過點(diǎn)C的直線與線段OA,OB分別相交于點(diǎn)M,N.若
          OM
          =x
          OA
          ,
          ON
          =y
          OB

          (1)求證:x與y的關(guān)系為y=
          x
          x+1
          ;
          (2)設(shè)f(x)=
          x
          x+1
          ,定義函數(shù)F(x)=
          1
          f(x)
          -1(0<x≤1)
          ,點(diǎn)列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項(xiàng)為1,公比為
          1
          2
          的等比數(shù)列,O為原點(diǎn),令
          OP
          =
          OP1
          +
          OP2
          +…+
          OPn
          ,是否存在點(diǎn)Q(1,m),使得
          OP
          OQ
          ?若存在,請求出Q點(diǎn)坐標(biāo);若不存在,請說明理由.
          (3)設(shè)函數(shù)G(x)為R上偶函數(shù),當(dāng)x∈[0,1]時(shí)G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當(dāng)方程G(x)=ax+
          1
          2
          在x∈[2k,2k+2](k∈N)上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)選修4-2:矩陣與變換
          若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為e1=
          1
          0
          e2=
          0
          1

          (I)求矩陣A;
          (II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知曲線C1的參數(shù)方程為
          x=2sinθ
          y=cosθ
          為參數(shù)),C2的參數(shù)方程為
          x=2t
          y=t+1
          (t
          為參數(shù))
          (I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
          (II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
          (3)選修4-5:不等式選講
          設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
          (I)求關(guān)于x的不等式f(x)≤5的解集;
          (II)若g(x)=
          1
          f(x)+m
          的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (1)選修4-2:矩陣與變換
          若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為e1=
          1
          0
          e2=
          0
          1

          (I)求矩陣A;
          (II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知曲線C1的參數(shù)方程為
          x=2sinθ
          y=cosθ
          為參數(shù)),C2的參數(shù)方程為
          x=2t
          y=t+1
          (t
          為參數(shù))
          (I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
          (II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
          (3)選修4-5:不等式選講
          設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
          (I)求關(guān)于x的不等式f(x)≤5的解集;
          (II)若g(x)=
          1
          f(x)+m
          的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (選修4—1幾何證明選講)已知:直線AB過圓心O,交⊙O于AB,直線AF交⊙O于F(不與B重合),直線l與⊙O相切于C,交AB于E,且與AF垂直,垂足為G,連結(jié)AC

          求證:(1)   (2)AC2=AE·AF

          23(選修4—4坐標(biāo)系與參數(shù)方程選講)以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長度.已知直線經(jīng)過點(diǎn)P(1,1),傾斜角

          (I)寫出直線參數(shù)方程;

          (II)設(shè)與圓相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

          24.選修4-5:不等式選講

          設(shè)函數(shù)

          (Ⅰ)求不等式的解集;

          (Ⅱ),使,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省福州三中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          (1)選修4-2:矩陣與變換
          若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為
          (I)求矩陣A;
          (II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知曲線C1的參數(shù)方程為為參數(shù)),C2的參數(shù)方程為為參數(shù))
          (I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
          (II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
          (3)選修4-5:不等式選講
          設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
          (I)求關(guān)于x的不等式f(x)≤5的解集;
          (II)若的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案