日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知直線L:y=kx-1與拋物線C:y=x2,相交于兩點A、B,設(shè)點M(0,2),△MAB的面積為S.
          (1)若直線L上與M連線距離為1的點至多存在一個,求S的范圍.
          (2)若直線L上與M連線的距離為1的點有兩個,分別記為C、D,且滿足S≥λ|CD|恒成立,求正數(shù)λ的范圍.

          【答案】分析:(1)利用直線L與拋物線相交,直線L上與M連線距離為1的點至多存在一個,確定k的范圍,表示出S,即可求S的范圍.
          (2)條件等價于λ≤,求出相應(yīng)函數(shù)的最小值,即可求正數(shù)λ的范圍.
          解答:解:(1)由已知,直線L與拋物線相交,由可得x2-kx+1=0,∴△=k2-4>0,即k2>4…(1)
          又直線L與以M為圓心的單位圓相離或相切,所以,即k2≤8…(2)
          由(1)(2)得:4<k2≤8
          ==
          ∴S∈(0,3];…(7分)
          (2)由題意可知,當(dāng)直線L與以M為圓心的單位圓相交于點C,D時,可得k2>8,且|CD|=2=2
          令f(k)==
          令t=k2-8(t>0),則y==,當(dāng)且僅當(dāng)k=取到最小值是
          所以,  …(14分)
          點評:本題考查直線與圓的位置關(guān)系,考查三角形面積的計算,考查基本不等式的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知直線l:y=kx-2與拋物線C:x2=-2py(p>0)交于A,B兩點,O為坐標(biāo)原點,
          OA
          +
          OB
          =(-4,-12)

          (Ⅰ)求直線l和拋物線C的方程;
          (Ⅱ)拋物線上一動點P從A到B運動時,求△ABP面積最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)設(shè)a>0,如圖,已知直線l:y=ax及曲線C:y=x2,C上的點Q1的橫坐標(biāo)為a1(0<a1<a).從C上的點Qn(n≥1)作直線平行于x軸,交直線l于點Pn+1,再從點Pn+1作直線平行于y軸,交曲線C于點Qn+1.Qn(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.
          (Ⅰ)試求an+1與an的關(guān)系,并求{an}的通項公式;
          (Ⅱ)當(dāng)a=1,a1
          1
          2
          時,證明
          n
          k=1
          (ak-ak+1)ak+2
          1
          32
          ;
          (Ⅲ)當(dāng)a=1時,證明
          n
          k-1
          (ak-ak+1)ak+2
          1
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知直線L:y=kx-1與拋物線C:y=x2,相交于兩點A、B,設(shè)點M(0,2),△MAB的面積為S.
          (1)若直線L上與M連線距離為1的點至多存在一個,求S的范圍.
          (2)若直線L上與M連線的距離為1的點有兩個,分別記為C、D,且滿足S≥λ|CD|恒成立,求正數(shù)λ的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•廣州三模)如圖,已知直線l:y=4x及曲線C:y=x2,C上的點Q1的橫坐標(biāo)為a1(0<a1<4).從曲線C上的點Qn(n≥1)作直線平行于x軸,交直線l于點Pn+1,再從點Pn+1作直線平行于y軸,交曲線C于點Qn+1.Qn(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.
          (1)試求an+1與an的關(guān)系; 
          (2)若曲線C的平行于直線l的切線的切點恰好介于點Q1,Q2之間(不與Q1,Q2重合),求a3的取值范圍;
          (3)若a1=3,求數(shù)列{an}的通項公式.

          查看答案和解析>>

          同步練習(xí)冊答案