日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),=2=2.

          (1)求證:;

          (2)求證:∥平面;

          (3)求三棱錐的體積

           

           

           

          【答案】

          (1)在Rt△ABC中,AB=1,∠BAC=60°,

          ∴BC=,AC=2.取中點(diǎn),連AF, EF,

          ∵PA=AC=2,∴PC⊥. 

          ∵PA⊥平面ABCD,平面ABCD,

          ∴PA⊥,又∠ACD=90°,即

          ,∴

          .   

          . ∴PC⊥

          (2)證法一:取AD中點(diǎn)M,連EM,CM.則

          EM∥PA.∵EM 平面PAB,PA平面PAB,

          ∴EM∥平面PAB.

          在Rt△ACD中,∠CAD=60°,AC=AM=2,

          ∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.

          ∵M(jìn)C 平面PAB,AB平面PAB,

          ∴MC∥平面PAB.

          ∵EM∩MC=M,∴平面EMC∥平面PAB.

          ∵EC平面EMC,∴EC∥平面PAB.

           證法二:延長DC、AB,設(shè)它們交于點(diǎn)N,連PN.

          ∵∠NAC=∠DAC=60°,AC⊥CD,∴C為ND的中點(diǎn).

          ∵E為PD中點(diǎn),∴EC∥PN

          ∵EC 平面PAB,PN平面PAB,∴EC∥平面PAB.   、

          (3)由(1)知AC=2,EF=CD, 且EF⊥平面PAC.

          在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=.、

          則V=

           

           

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
          PA=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn).
          (Ⅰ)求證:AF∥平面PEC;
          (Ⅱ)求PC與平面ABCD所成角的正切值;
          (Ⅲ)求二面角P-EC-D的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖.在四棱錐P一ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底    面ABCD,PD=DC=2,E是PC的中點(diǎn).
          (1)證明:PA∥平面EDB;
          (2)證明:平面PAC⊥平面PDB;
          (3)求三梭錐D一ECB的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知在四棱錐P一ABCD中,二面角P一AD一B為60°,∠PDA=45°,∠DAB=90°,∠PAD=90°,∠ADC=135°,
          (Ⅰ)求證:平面PAB⊥平面ABCD;
          (Ⅱ)求PD與平面ABCD所成角的正弦值;
          (Ⅲ)求二面角P一CD一B的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐P一ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).PA=PD=AD=2,點(diǎn)M在線段PC上 PM=
          13
          PC
          (1)證明:PA∥平面MQB;
          (2)若平面PAD⊥平面ABCD,求二面角M-BQ-C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分14分)在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD與底面ABCD垂直,PD=DC,EPC的中點(diǎn),作EF于點(diǎn)F(Ⅰ)證明PA平面EBD

          (Ⅱ)證明PB平面EFD

          (Ⅲ)求二面角的余弦值;

          查看答案和解析>>

          同步練習(xí)冊答案