日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          -x2+2ax,(x≤1)
          (2a-1)x-3a+6,  (x>1)
          ,若f(x)在(-∞,+∞)
          上是增函數(shù),則實數(shù)a的取值范圍是( 。
          分析:由題意可得,函數(shù)在(-∞,1)上是增函數(shù),在(1,+∞)上也是增函數(shù),且有-12+2a×1≤(2a-1)×1-3a+6,從而可得一不等式組,解出即可.
          解答:解:因為函數(shù)f(x)在(-∞,+∞)上是增函數(shù),
          所以f(x)在(-∞,1),(1,+∞)上均單調(diào)遞增,且-12+2a×1≤(2a-1)×1-3a+6,
          故有
          a≥1
          2a-1>0
          -12+2a×1≤(2a-1)×1-3a+6
          ,解得1≤a≤2.
          所以實數(shù)a的取值范圍是[1,2].
          故選D
          點評:本題考查函數(shù)的單調(diào)性的性質(zhì),考查學(xué)生分析問題解決問題的能力,注意體會數(shù)形結(jié)合思想在分析問題中的作用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3x+5,(x≤0)
          x+5,(0<x≤1)
          -2x+8,(x>1)

          求(1)f(
          1
          π
          ),f[f(-1)]
          的值;
          (2)若f(a)>2,則a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=
          (1-3a)x+10ax≤7
          ax-7x>7.
          是定義域上的遞減函數(shù),則實數(shù)a的取值范圍是( 。
          A、(
          1
          3
          ,1)
          B、(
          1
          3
          ,
          1
          2
          ]
          C、(
          1
          3
          6
          11
          ]
          D、[
          6
          11
          ,1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          |x-1|-a
          1-x2
          是奇函數(shù).則實數(shù)a的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2x-2-x2x+2-x

          (1)求f(x)的定義域與值域;
          (2)判斷f(x)的奇偶性并證明;
          (3)研究f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x-1x+a
          +ln(x+1)
          ,其中實數(shù)a≠1.
          (1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
          (2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

          查看答案和解析>>

          同步練習(xí)冊答案