日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)已知橢圓的離心率為,定點,橢圓短軸的端點是,,且.
          (1)求橢圓的方程;
          (2)設(shè)過點且斜率不為的直線交橢圓兩點.試問軸上是否存在定點,使平分?若存在,求出點的坐標(biāo);若不存在,說明理由.

          (1). (2)存在定點,使平分.

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經(jīng)過點,又知直線與雙曲線C相交于A、B兩點.
          (1)求雙曲線C的方程;
          (2)若,求實數(shù)k值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的一個焦點是,且截直線所得弦長為,求該橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分13分)已知雙曲線的右焦點與拋物線的焦點重合,求該雙曲線的焦點到其漸近線的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的離心率,A,B分別為橢圓的長軸和短軸的端點,M為AB的中點,O為坐標(biāo)原點,且.
          (1)求橢圓的方程;
          (2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的離心率為,定點M(1,0),橢圓短軸的端點是B1,B2,且 
          (1)求橢圓C的方程;
          (2)設(shè)過點M且斜率不為0的直線交橢圓C于A,B兩點.試問x軸上是否存在定點P,使PM平分∠APB?若存在,求出點P的坐標(biāo);若不存在,說明理由,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分) 求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
          (1)焦點在坐標(biāo)軸上,且經(jīng)過兩點;
          (2)經(jīng)過點(2,-3)且與橢圓具有共同的焦點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分14分)
          已知橢圓的離心率為,其中左焦點F(-2,0).
          (1) 求橢圓C的方程;
          (2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,
          求m的值.  

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且

          (Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;
          (Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案