日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是( )
          A.(1,+∞)
          B.(2,+∞)
          C.(﹣∞,0)
          D.(﹣∞,1)

          【答案】C
          【解析】解:令t=x2﹣2x>0,求得x<0,或x>2,故函數(shù)的定義域?yàn)椋ī仭蓿?)∪(2,+∞),

          且f(x)=log (x2﹣2x)=g(t)=log t.

          根據(jù)復(fù)合函數(shù)的單調(diào)性,本題即求函數(shù)t=x2﹣2x在定義域內(nèi)的減區(qū)間.

          再利用二次函數(shù)的性質(zhì)可得函數(shù)t=x2﹣2x在定義域內(nèi)的減區(qū)間為(﹣∞,0),

          所以答案是:C.

          【考點(diǎn)精析】利用復(fù)合函數(shù)單調(diào)性的判斷方法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓E: =1(a>b>0)經(jīng)過點(diǎn)A(0,﹣1),且離心率為 . (I)求橢圓E的方程;
          (II)經(jīng)過點(diǎn)(1,1),且斜率為k的直線與橢圓E交于不同兩點(diǎn)P,Q(均異于點(diǎn)A),問直線AP與AQ的斜率之和是否為定值,若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB;
          (Ⅱ)設(shè)B=90°,且a= ,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}滿足a1=2,且anan+1+an+1﹣2an=0(n∈N+).
          (1)求a2、a3、a4的值;
          (2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(n)=1+ + +…+ (n∈N*),計(jì)算得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,由此推算:當(dāng)n≥2時(shí),有(
          A.f(2n)> (n∈N*
          B.f(2n)> (n∈N*
          C.f(2n)> (n∈N*
          D.f(2n)> (n∈N*

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= +lnx在(1,+∞)上是增函數(shù),且a>0.
          (1)求a的取值范圍;
          (2)求函數(shù)g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
          (3)設(shè)a>1,b>0,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:(x﹣1)2+(y﹣2)2=25,直線l:(2m+1)x+(m+1)y﹣7m﹣4=0.
          (1)求證:直線l恒過定點(diǎn);
          (2)求直線l被圓C截得的弦長最長與最短的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(用空間向量坐標(biāo)表示解答)已知正三棱柱ABC﹣A1B1C1的各棱長都是4,E是BC的中點(diǎn),F(xiàn)在CC1上,且CF=1.

          (1)求證:EF⊥A1C;
          (2)求二面角C﹣AF﹣E的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|x﹣t|+ (x>0);
          (1)判斷函數(shù)y=f(x)在區(qū)間(0,t]上的單調(diào)性,并證明;
          (2)若函數(shù)y=f(x)的最小值為與t無關(guān)的常數(shù),求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案