日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在正方體ABCD-A1B1C1D1中,點E在A1C1上,|A1E|=數(shù)學公式|A1C1|且數(shù)學公式=x數(shù)學公式+y數(shù)學公式+z數(shù)學公式,則x+y+z=________.


          分析:在三角形AA1E中結合題中的條件=x+y+z因此要用,表示而根據(jù)向量的相等可得再結合,|A1E|=|A1C1|代入比較兩邊的系數(shù)即可得解.
          解答:解:∵=,


          ∵|A1E|=|A1C1|
          ,,
          =x+y+z
          ∴x=1,y=,z=

          故答案為
          點評:本題主要考查了利用空間向量的基本定理求.關鍵是利用向量的相等用,,,表示然后利用條件比較兩邊的系數(shù)即可得解.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          16、在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交AA′于E,交CC′于F,則
          ①四邊形BFD′E一定是平行四邊形;
          ②四邊形BFD′E有可能是正方形;
          ③四邊形BFD′E在底面ABCD內的投影一定是正方形;
          ④平面BFD′E有可能垂直于平面BB′D.
          以上結論正確的為
          ①③④
          .(寫出所有正確結論的編號)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點,則二面角E-AB-C的大小為
          45°
          45°

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點. 
          (1)若M為BB′的中點,證明:平面EMF∥平面ABCD.
          (2)求異面直線EF與AD′所成的角.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關系是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交棱AA′于E,交棱CC′于F,則:
          ①四邊形BFD′E一定是平行四邊形;
          ②四邊形BFD′E有可能是正方形;
          ③四邊形BFD′E有可能是菱形;
          ④四邊形BFD′E有可能垂直于平面BB′D.
          其中所有正確結論的序號是
           

          查看答案和解析>>

          同步練習冊答案