【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)
【答案】B
【解析】解:令g(x)=0得f(x)=kx, ∵g(x)有兩個(gè)零點(diǎn),
∴直線y=kx與y=f(x)有兩個(gè)交點(diǎn),
做出y=kx和y=f(x)的函數(shù)圖象,如圖所示:
設(shè)y=k1x與曲線y=ex相切,切點(diǎn)為(x0 , y0),
則 ,解得
.
∵y=kx與y=f(x)有兩個(gè)交點(diǎn),
∴k的取值范圍是(e,10].
故選B.
令g(x)=0得出f(x)=kx,做出y=kx與y=f(x)的函數(shù)圖象,則兩圖象有兩個(gè)交點(diǎn),求出y=f(x)的過原點(diǎn)的切線的斜率即可得出k的范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 滿足:
,
,
;數(shù)列
滿足:
.
(1)求數(shù)列 ,
的通項(xiàng)公式;
(2)證明:數(shù)列 中的任意三項(xiàng)不可能成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 函數(shù)
在區(qū)間
上有1個(gè)零點(diǎn);
函數(shù)
圖象與
軸交于不同的兩點(diǎn).若“
”是假命題,“
”是真命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分.)
數(shù)列中{an},a1=8,a4=2,且滿足an+2= 2an+1- an,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=,求Sn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 中,底面ABCD為矩形,側(cè)面PAD為正三角形,且平面
ABCD平面, E為PD中點(diǎn), AD=2.
(Ⅰ)求證:平面 平面PCD;
(Ⅱ)若二面角 的平面角大小
滿足
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)完全充滿電量,在開機(jī)不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時(shí)間稱為手機(jī)的待機(jī)時(shí)間。
為了解A,B兩個(gè)不同型號手機(jī)的待機(jī)時(shí)間,現(xiàn)從某賣場庫存手機(jī)中隨機(jī)抽取A,B兩個(gè)型號的手機(jī)各5臺,在相同條件下進(jìn)行測試,統(tǒng)計(jì)結(jié)果如下:
手機(jī)編號 | 1 | 2 | 3 | 4 | 5 |
A型待機(jī)時(shí)間(h) | 120 | 125 | 122 | 124 | 124 |
B型待機(jī)時(shí)間(h) | 118 | 123 | 127 | 120 | a |
已知A,B兩個(gè)型號被測試手機(jī)待機(jī)時(shí)間的平均值相等。
(Ⅰ)求a的值;
(Ⅱ)求A型號被測試手機(jī)待機(jī)時(shí)間方差和標(biāo)準(zhǔn)差的大小;
(Ⅲ)從被測試的手機(jī)中隨機(jī)抽取A,B型號手機(jī)各1臺,求至少有1臺的待機(jī)時(shí)間超過122小時(shí)的概率。
(注:n個(gè)數(shù)據(jù)…
的方差
…
,其中
為數(shù)據(jù)
…
的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知由實(shí)數(shù)組成的等比數(shù)列{an}的前項(xiàng)和為Sn , 且滿足8a4=a7 , S7=254.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對n∈N* , bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,面為正方形,面
為等腰梯形,
,
,
,
.
(I)求證: 平面
.
(II)求與平面
所成角的正弦值.
(III)線段上是否存在點(diǎn)
,使平面
平面
?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,如果對任意
都有
(
為常數(shù)),則稱
為等差比數(shù)列,
稱為公差比.現(xiàn)給出下列命題:
①等差比數(shù)列的公差比一定不為;
②等差數(shù)列一定是等差比數(shù)列;
③若,則數(shù)列
是等差比數(shù)列;
④若等比數(shù)列是等差比數(shù)列,則其公比等于公差比.
其中正確的命題的序號為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com