日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某公司生產(chǎn)某種消防安全產(chǎn)品,年產(chǎn)量x臺(0≤x≤100,x∈N)時(shí),銷售收入函數(shù)R(x)=3000x-20x2(單位:百元),其成本函數(shù)滿足C(x)=500x+b(單位:百元).已知該公司不生產(chǎn)任何產(chǎn)品時(shí),其成本為4000(百元).
          (1)求利潤函數(shù)P(x);
          (2)問該公司生產(chǎn)多少臺產(chǎn)品時(shí),利潤最大,最大利潤是多少?
          (3)在經(jīng)濟(jì)學(xué)中,對于函數(shù)f(x),我們把函數(shù)f(x+1)-f(x)稱為函數(shù)f(x)的邊際函數(shù),記作Mf(x).對于(1)求得的利潤函數(shù)P(x),求邊際函數(shù)MP(x);并利用邊際函數(shù)MP(x)的性質(zhì)解釋公司生產(chǎn)利潤情況.(本題所指的函數(shù)性質(zhì)主要包括:函數(shù)的單調(diào)性、最值、零點(diǎn)等)
          【答案】分析:(1)由題意,x=0,b=4000,所以C(x)=500x+4000,P(x)=R(x)-C(x)=3000x-20x2-500x-4000=-20x2+2500x-4000,0≤x≤100.
          (2)P(x)=,(0≤x≤100,x∈N),由此能求出最大利潤和取得最大利潤時(shí)的產(chǎn)量.
          (3)MP(x)=P(x+1)-P(x)=-40x+2480(0≤x≤99,x∈N).邊際函數(shù)為減函數(shù),說明隨著產(chǎn)量的增加,每生產(chǎn)一臺的利潤與生產(chǎn)前一臺利潤相比在減少;說明生產(chǎn)第一臺的利潤差最大;生產(chǎn)62臺時(shí),利潤達(dá)到最大.
          解答:解:(1)由題意,x=0,b=4000,
          所以C(x)=500x+4000,
          P(x)=R(x)-C(x)=3000x-20x2-500x-4000
          =-20x2+2500x-4000,0≤x≤100.
          (2)P(x)=,(0≤x≤100,x∈N)
          所以x=62或x=63.
          P(x)max=P(62)=P(63)=74120(百元).
          (3)MP(x)=P(x+1)-P(x)=-40x+2480(0≤x≤99,x∈N)
          邊際函數(shù)為減函數(shù),說明隨著產(chǎn)量的增加,每生產(chǎn)一臺的利潤與生產(chǎn)前一臺利潤相比在減少;
          當(dāng)x=0時(shí),邊際函數(shù)取得最大值為2480,說明生產(chǎn)第一臺的利潤差最大;
          當(dāng)x=62時(shí),邊際函數(shù)為零,說明生產(chǎn)62臺時(shí),利潤達(dá)到最大.
          點(diǎn)評:本題考查函數(shù)在生產(chǎn)實(shí)際中的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          某公司生產(chǎn)某種產(chǎn)品的成本為 1000元,并以1100元的價(jià)格批發(fā)出去,公司收入隨生產(chǎn)產(chǎn)品數(shù)量的增加而
          增加
          增加
          (填“增加”或“減少”),它們之間
          (填“是”或“不是”)函數(shù)關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•崇明縣二模)某公司生產(chǎn)某種消防安全產(chǎn)品,年產(chǎn)量x臺(0≤x≤100,x∈N)時(shí),銷售收入函數(shù)R(x)=3000x-20x2(單位:百元),其成本函數(shù)滿足C(x)=500x+b(單位:百元).已知該公司不生產(chǎn)任何產(chǎn)品時(shí),其成本為4000(百元).
          (1)求利潤函數(shù)P(x);
          (2)問該公司生產(chǎn)多少臺產(chǎn)品時(shí),利潤最大,最大利潤是多少?
          (3)在經(jīng)濟(jì)學(xué)中,對于函數(shù)f(x),我們把函數(shù)f(x+1)-f(x)稱為函數(shù)f(x)的邊際函數(shù),記作Mf(x).對于(1)求得的利潤函數(shù)P(x),求邊際函數(shù)MP(x);并利用邊際函數(shù)MP(x)的性質(zhì)解釋公司生產(chǎn)利潤情況.(本題所指的函數(shù)性質(zhì)主要包括:函數(shù)的單調(diào)性、最值、零點(diǎn)等)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某公司生產(chǎn)某種消防安全產(chǎn)品,年產(chǎn)量x臺(0≤x≤100,x∈N)時(shí),銷售收入函數(shù)R(x)=3000x-20x2(單位:百元),其成本函數(shù)滿足C(x)=500x+b(單位:百元).已知該公司不生產(chǎn)任何產(chǎn)品時(shí),其成本為4000(百元).
          (1)求利潤函數(shù)P(x);
          (2)問該公司生產(chǎn)多少臺產(chǎn)品時(shí),利潤最大,最大利潤是多少?
          (3)在經(jīng)濟(jì)學(xué)中,對于函數(shù)f(x),我們把函數(shù)f(x+1)-f(x)稱為函數(shù)f(x)的邊際函數(shù),記作Mf(x).對于(1)求得的利潤函數(shù)P(x),求邊際函數(shù)MP(x);并利用邊際函數(shù)MP(x)的性質(zhì)解釋公司生產(chǎn)利潤情況.(本題所指的函數(shù)性質(zhì)主要包括:函數(shù)的單調(diào)性、最值、零點(diǎn)等)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年上海市崇明縣高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          某公司生產(chǎn)某種消防安全產(chǎn)品,年產(chǎn)量x臺(0≤x≤100,x∈N)時(shí),銷售收入函數(shù)R(x)=3000x-20x2(單位:百元),其成本函數(shù)滿足C(x)=500x+b(單位:百元).已知該公司不生產(chǎn)任何產(chǎn)品時(shí),其成本為4000(百元).
          (1)求利潤函數(shù)P(x);
          (2)問該公司生產(chǎn)多少臺產(chǎn)品時(shí),利潤最大,最大利潤是多少?
          (3)在經(jīng)濟(jì)學(xué)中,對于函數(shù)f(x),我們把函數(shù)f(x+1)-f(x)稱為函數(shù)f(x)的邊際函數(shù),記作Mf(x).對于(1)求得的利潤函數(shù)P(x),求邊際函數(shù)MP(x);并利用邊際函數(shù)MP(x)的性質(zhì)解釋公司生產(chǎn)利潤情況.(本題所指的函數(shù)性質(zhì)主要包括:函數(shù)的單調(diào)性、最值、零點(diǎn)等)

          查看答案和解析>>

          同步練習(xí)冊答案