日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•香洲區(qū)模擬)有一個(gè)各棱長(zhǎng)均為1的正四棱錐,先用一張正方形包裝紙將其完全包住,不能剪裁,可以折疊,那么包裝紙的最小面積為
          2+
          3
          2+
          3
          分析:本題考查的是四棱錐的側(cè)面展開(kāi)問(wèn)題.在解答時(shí),首先要將四棱錐的四個(gè)側(cè)面沿底面展開(kāi),觀察展開(kāi)的圖形易知包裝紙的對(duì)角線處在什么位置時(shí),包裝紙面積最小,進(jìn)而獲得問(wèn)題的解答.
          解答:解:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開(kāi)時(shí)如圖所示:
          當(dāng)以PP′為正方形的對(duì)角線時(shí),
          所需正方形的包裝紙的面積最小,此時(shí)邊長(zhǎng)最。
          設(shè)此時(shí)的正方形邊長(zhǎng)為x則:(PP′)2=2x2
          又因?yàn)?PP′=1+2×
          3
          2
          =1+
          3
          ,
          ∴(1+
          3
          )2=2x2,
          解得:x=
          6
          +
          2
          2

          包裝紙的最小面積S=x2=(
          6
          +
          2
          2
          2=2+
          3

          故答案為:2+
          3
          點(diǎn)評(píng):本題考查的是棱錐的結(jié)構(gòu)特征、四棱錐的側(cè)面展開(kāi)問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了側(cè)面展開(kāi)的處理問(wèn)題方法、圖形的觀察和分析能力以及問(wèn)題轉(zhuǎn)化的思想.值得同學(xué)們體會(huì)反思.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•香洲區(qū)模擬)如圖所示,將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))有n(n>1,n∈N*)個(gè)點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為an,則
          9
          a2a3
          +
          9
          a3a4
          +
          9
          a4a5
          +…+
          9
          a2012a2013
          =( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•香洲區(qū)模擬)已知向量
          a
          ,
          b
          滿足|
          a
          |=1,|
          b
          |=
          2
          ,
          a
          b
          =1
          ,則
          a
          b
          的夾角為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•香洲區(qū)模擬)已知橢圓C的焦點(diǎn)在x軸上,中心在原點(diǎn),離心率e=
          3
          3
          ,直線l:y=x+2與以原點(diǎn)為圓心,橢圓C的短半軸為半徑的圓O相切.
          (I)求橢圓C的方程;
          (Ⅱ)設(shè)橢圓C的左、右頂點(diǎn)分別為A1,A2,點(diǎn)M是橢圓上異于Al,A2的任意一點(diǎn),設(shè)直線MA1,MA2的斜率分別為kMA1,kMA2,證明kMA1,kMA2為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•香洲區(qū)模擬)如圖,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=4,BC=4,BB1=3,M、N分別是B1C1和AC的中點(diǎn).
          (1)求異面直線AB1與C1N所成的角;
          (2)求三棱錐M-C1CN的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•香洲區(qū)模擬)已知向量
          m
          =(-2sinx,-1),
          n
          =(-cosx,cos2x)
          ,定義f(x)=
          m
          n

          (1)求函數(shù)f(x)的表達(dá)式,并求其單調(diào)增區(qū)間;
          (2)在銳角△ABC中,角A、B、C對(duì)邊分別為a、b、c,且f(A)=1,bc=8,求△ABC的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案