日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】如圖,已知曲線,曲線,P是平面上一點,若存在過點P的直線與都有公共點,則稱P“C1—C2型點

          (1)在正確證明的左焦點是“C1—C2型點時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);

          (2)設直線有公共點,求證,進而證明原點不是“C1—C2型點;

          (3)求證:圓內的點都不是“C1—C2型點

          【答案】見解析

          【解析】

          1C1的左焦點為,過F的直線C1交于,與C2交于,故C1的左焦點為“C1-C2型點,且直線可以為

          2)直線C2有交點,則

          ,若方程組有解,則必須;

          直線C2有交點,則

          ,若方程組有解,則必須

          故直線至多與曲線C1C2中的一條有交點,即原點不是“C1-C2型點

          3)顯然過圓內一點的直線若與曲線C1有交點,則斜率必存在;

          根據對稱性,不妨設直線斜率存在且與曲線C2交于點,則

          直線與圓內部有交點,故

          化簡得,

          若直線與曲線C1有交點,則

          化簡得,

          ①②得,

          但此時,因為,即式不成立;

          時,式也不成立

          綜上,直線若與圓內有交點,則不可能同時與曲線C1C2有交點,

          即圓內的點都不是“C1-C2型點

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】(3’+7’+8’)已知以a1為首項的數列{an}滿足:an1.

          1a11,c1,d3時,求數列{an}的通項公式

          20a11,c1d3時,試用a1表示數列{an}的前100項的和S100

          30a1m是正整數),c,d3m時,求證:數列a2,a3m+2,a6m+2,a9m+2成等比數列當且僅當d3m.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知橢圓C1ab0)的左、右焦點分別為F1、F2,點P(﹣1)在橢圓C上,且|PF2|

          1)求橢圓C的方程;

          2)過點F2的直線l與橢圓C交于A,B兩點,M為線段AB的中點,若橢圓C上存在點N,滿足3O為坐標原點),求直線l的方程.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】設函數.

          1)求函數的單調區(qū)間和極值;

          2)若存在滿足,證明成立.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】設橢圓的焦點在軸上.

          1)若橢圓的焦距為1,求橢圓的方程;

          2)設分別是橢圓的左、右焦點,為橢圓上的第一象限內的點,直線軸與點,并且,證明:當變化時,點在某定直線上.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知橢圓C:l(a>b>0)經過點(,1),且離心率e.

          (1)求橢圓C的方程;

          (2)若直線l與橢圓C相交于AB兩點,且滿足∠AOB=90°(O為坐標原點),求|AB|的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】(Ⅰ)設x1,y1,證明x+yxy;

          (Ⅱ)1abc,證明logab+logbc+logcalogba+logcb+logac

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知拋物線,為其焦點,為其準線,過任作一條直線交拋物線于兩點,分別為、上的射影,的中點,給出下列命題:

          1;(2;(3;

          4的交點的軸上;(5交于原點.

          其中真命題的序號為_________.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,四棱錐中,,,,,為等邊三角形,是棱上一點.

          1)證明:

          2)若平面,求三棱錐的體積.

          查看答案和解析>>

          同步練習冊答案