日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義在(0,+∞)上的函數(shù)f(x)滿足:f(2x)=2f(x),且當(dāng)x∈(1,2]時,f(x)=2-x,若x1,x2是方程f(x)=a(0<a≤1)的兩個實數(shù)根,則x1-x2不可能是


          1. A.
            24
          2. B.
            72
          3. C.
            96
          4. D.
            120
          B
          分析:根據(jù)題中的條件得到函數(shù)的解析式為:f(x)=-x+2b,x∈(b,2b],又將方程f(x)=a(0<a≤1)的兩個實數(shù)根,轉(zhuǎn)化為函數(shù)y=f(x)圖象和直線y=a的交點問題,再結(jié)合函數(shù)的圖象根據(jù)題意求出答案即可.
          解答:因為對任意的x∈(0,+∞)恒有f(2x)=2f(x)成立,且當(dāng)x∈(1,2]時,f(x)=2-x
          所以f(x)=-x+2b,x∈(b,2b],b∈N*
          由題意方程f(x)=a(0<a≤1)的兩個實數(shù)根,得函數(shù)y=f(x)圖象和直線y=a的有兩個交點,
          分別畫出它們的圖象,如圖所示,
          所以可得函數(shù)y=f(x)圖象和直線y=a的交點的橫坐標之差可以是2,4,8,16,32,64,…
          由于24=8+16;96=32+64;120=8+16+32+64.
          則x1-x2不可能是72.
          故選B.
          點評:解決此類問題的關(guān)鍵是熟悉求函數(shù)解析式的方法以及函數(shù)的圖象與函數(shù)的性質(zhì),數(shù)形結(jié)合思想是高中數(shù)學(xué)的一個重要數(shù)學(xué)數(shù)學(xué),是解決數(shù)學(xué)問題的必備的解題工具.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在(0,1)上的函數(shù)f(x),對任意的m,n∈(1,+∞)且m<n時,都有f(
          1
          n
          )-
          f(
          1
          m
          )=f(
          m-n
          1-mn
          )
          an=f(
          1
          n2+5n+5
          )
          ,n∈N*,則在數(shù)列{an}中,a1+a2+…a8=(  )
          A、f(
          1
          2
          )
          B、f(
          1
          3
          )
          C、f(
          1
          4
          )
          D、f(
          1
          5
          )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在(0,1)上的函數(shù),且滿足:①對任意x∈(0,1),恒有f(x)>0;②對任意x1,x2∈(0,1),恒有
          f(x1)
          f(x2)
          +
          f(1-x1)
          f(1-x2)
          ≤2
          ,則下面關(guān)于函數(shù)f(x)判斷正確的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•順義區(qū)二模)已知定義在區(qū)間[0,
          2
          ]上的函數(shù)y=f(x)的圖象關(guān)于直線x=
          4
          對稱,當(dāng)x
          4
          時,f(x)=cosx,如果關(guān)于x的方程f(x)=a有解,記所有解的和為S,則S不可能為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          填空題
          (1)已知
          cos2x
          sin(x+
          π
          4
          )
          =
          4
          3
          ,則sin2x的值為
          1
          9
          1
          9

          (2)已知定義在區(qū)間[0,
          2
          ]
          上的函數(shù)y=f(x)的圖象關(guān)于直線x=
          4
          對稱,當(dāng)x≥
          4
          時,f(x)=cosx,如果關(guān)于x的方程f(x)=a有四個不同的解,則實數(shù)a的取值范圍為
          (-1,-
          2
          2
          )
          (-1,-
          2
          2
          )


          (3)設(shè)向量
          a
          ,
          b
          ,
          c
          滿足
          a
          +
          b
          +
          c
          =
          0
          ,(
          a
          -
          b
          )⊥
          c
          ,
          a
          b
          ,若|
          a
          |=1
          ,則|
          a
          |2+|
          b
          |2+|
          c
          |2
          的值是
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•湖州二模)定義在(0,
          π
          2
          )上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)<f′(x)tanx成立,則( 。

          查看答案和解析>>

          同步練習(xí)冊答案