日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若關于x的不等式f(x)<0和g(x)<0的解集分別為(a,b)和(,),則稱這兩個不等式為對偶不等式.如果不等式x2-4x•cosθ+2<0與不等式2x2-4x•sinθ+1<0為對偶不等式,且θ∈(,π),則θ=   
          【答案】分析:由題意若不等式x2-4 xcos2θ+2<0的解集為(a,b) 則不等式2x2-4xsin2θ+1<0的解集( );由一元二次方程與不等式的關系可知,,整理,結合三角函數(shù)的輔助角公式可求θ
          解答:解:設不等式x2-4 xcos2θ+2<0的解集為(a,b),由題意可得不等式2x2-4xsin2θ+1<0的解集(
          由一元二次方程與不等式的關系可知,
          整理可得,
          ,且θ∈( ,π),

          故答案為:
          點評:本題以新定義為載體,考查了一元二次方程與一元二次不等式的相互轉化關系,方程的根與系數(shù)的關系,考查了輔助角公式的應用.是一道綜合性比較好的試題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知a,b實數(shù),設函數(shù)f(x)=2x2+(1+a)bx-b.
          (1)若關于x的不等式f(x)<0的解集為(1,3),求實數(shù)a,b的值;
          (2)設b為已知的常數(shù),且f(1)>0,求滿足條件的a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=loga(2+x)-loga(2-x)(a>0,a≠1),設f(x)的反函數(shù)為f-1(x).若關于x的不等式f-1(x)<m(m∈R)有解,則m的取值范圍是(  )
          A、m>-2B、m>2C、-2<m<2D、隨a的變化而變化

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知矩陣A=
          a2
          1b
          有一個屬于特征值1的特征向量
          α
          =
          2
          -1

          ①求矩陣A;
          ②已知矩陣B=
          1-1
          01
          ,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
          (2)已知在直角坐標系xOy中,直線l的參數(shù)方程為
          x=t-3
          y=
          3
           t
          (t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
          ①求直線l普通方程和曲線C的直角坐標方程;
          ②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
          (3)已知函數(shù)f(x)=|x-1|+|x+1|.
          ①求不等式f(x)≥3的解集;
          ②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•溫州二模)已知函數(shù)f(x)=
          lnx
          x

          (I)若關于x的不等式f(x)≤m恒成立,求實數(shù)m的最小值:
          (II)對任意的x1,x2∈(0,2)且x1<x2,己知存在.x0∈(x1,x2)使得f′(x0)=
          f(x2)-f(x 1)
          x2-x1

          求證:x0
          x1x2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          選修4-5:不等式選講設函數(shù)f(x)=|2-2x|+|x+3|.
          (1)解不等式f(x)>6;
          (2)若關于x的不等式f(x)≤|2a-1|的解集不是空集,試求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習冊答案