日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設M={x|-1≤x≤1},N={y|0≤y≤1},給出4個圖形,能表示集合M到集合N的函數(shù)關系的有(  )個
          分析:直接利用函數(shù)的定義,判斷選項即可.
          解答:解:由函數(shù)的定義可知,選項A滿足題意,對于B,定義域與條件不符,所以不正確;對于C,自變量x與y的對應關系是一對二,表示函數(shù),C不正確.對于D,函數(shù)的值域與條件不符,所以不正確.
          故選:B.
          點評:本題考查函數(shù)的定義的判斷,考查基本知識的應用.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設全集U=R,集合M={x|
          x
          =
          x2-2
          ,x∈R},N={x|
          x+1
          ≤2,x∈R},則(?UM)∩N等于( 。
          A、{2}
          B、{x|-1≤x≤3}
          C、{x|x<2或2<x<3}
          D、{x|-1≤x<2或2<x≤3}

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設M={x|1<x<3},N={2≤x<4},定義M與N的差集M-N={x|x∈M且x∉N},則M-N=
          {x|1<x<2}
          {x|1<x<2}

          查看答案和解析>>

          科目:高中數(shù)學 來源:徐州模擬 題型:解答題

          設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案