【題目】已知函數(shù),給出下列命題:
①若既是奇函數(shù)又是偶函數(shù),則
;
②若是奇函數(shù),且
,則
至少有三個(gè)零點(diǎn);
③若在
上不是單調(diào)函數(shù),則
不存在反函數(shù);
④若的最大值和最小值分別為
、
,則
的值域?yàn)?/span>
則其中正確的命題個(gè)數(shù)是( )
A.1B.2C.3D.4
【答案】B
【解析】
分別根據(jù)函數(shù)的性質(zhì)進(jìn)行判斷即可.
①若f(x)既是奇函數(shù)又是偶函數(shù),則滿(mǎn)足f(﹣x)=f(x)且f(﹣x)=﹣f(x),則f(x)=0故①正確;
②若f(x)是奇函數(shù),且f(﹣1)=f(1),則f(﹣1)=f(1)=﹣f(1),即f(1)=0,
則f(﹣1)=f(1)=0,且f(0)=0,則f(x)至少有三個(gè)零點(diǎn),0,1,﹣1;故②正確,
③若f(x)在R上不是單調(diào)函數(shù),則f(x)不存在反函數(shù)錯(cuò)誤,只要函數(shù)f(x)是一對(duì)一函數(shù)即可,與函數(shù)是否單調(diào)沒(méi)有關(guān)系,如f(x)=;故③錯(cuò)誤,
④若f(x)的最大值和最小值分別為M、m(m<M),則f(x)的值域?yàn)?/span>[m,M],錯(cuò)誤.
比如函數(shù)f(x)=x,(﹣1≤x≤0或1≤x≤2)則函數(shù)的值域?yàn)?/span>[﹣1,0]∪[1,2],
故正確的命題個(gè)數(shù)為2個(gè),
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿(mǎn)足
,且
是
的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,對(duì)任意正數(shù)數(shù)
,
恒成立,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在長(zhǎng)方體中,
,點(diǎn)E是棱
上的一個(gè)動(dòng)點(diǎn),若平面
交棱
于點(diǎn)
,給出下列命題:
①四棱錐的體積恒為定值;
②存在點(diǎn),使得
平面
;
③對(duì)于棱上任意一點(diǎn)
,在棱
上均有相應(yīng)的點(diǎn)
,使得
平面
;
④存在唯一的點(diǎn),使得截面四邊形
的周長(zhǎng)取得最小值.
其中真命題的是____________.(填寫(xiě)所有正確答案的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的定義域
恰是不等式
的解集,其值域?yàn)?/span>
,函數(shù)
的定義域?yàn)?/span>
,值域?yàn)?/span>
.
(1)求定義域
和值域
;
(2)試用單調(diào)性的定義法解決問(wèn)題:若存在實(shí)數(shù),使得函數(shù)
在
上單調(diào)遞減,
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍并用
表示
;
(3)是否存在實(shí)數(shù),使
成立?若存在,求實(shí)數(shù)
的取值范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
為矩形.
平面
,
分別為
的中點(diǎn),
與平面
所成的角為
.
(1)證明:為異面直線
與
的公垂線;
(2)若,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求
的值;
(2)設(shè),當(dāng)
時(shí),
的值域?yàn)?/span>
,試求
與
的值;
(3)當(dāng)時(shí),記
,如果對(duì)于區(qū)間
上的任意三個(gè)實(shí)數(shù)
、
、
,都存在以
、
、
為邊長(zhǎng)的三角形,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若的值域?yàn)?/span>
,求
的值;
(Ⅱ)巳,是否存在這祥的實(shí)數(shù)
,使函數(shù)
在區(qū)間
內(nèi)有且只有一個(gè)零點(diǎn).若存在,求出
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)兩點(diǎn),
滿(mǎn)足條件:①點(diǎn)
,
都在函數(shù)
的圖像上;②點(diǎn)
,
關(guān)于原點(diǎn)對(duì)稱(chēng).則稱(chēng)
是函數(shù)
的一個(gè)“伙伴點(diǎn)組”(點(diǎn)組
與
看作同一個(gè)“伙伴點(diǎn)組”).已知函數(shù)
有兩個(gè)“伙伴點(diǎn)組”,則實(shí)數(shù)
的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,橢圓
:
的離心率為
,直線
與
交于
,
兩點(diǎn),
長(zhǎng)度的最大值為4.
(1)求的方程;
(2)直線與
軸的交點(diǎn)為
,當(dāng)直線
變化(
不與
軸重合)時(shí),若
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com