日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè),若函數(shù)4個不同的零點,且,則的取值范圍是(

          A.B.C.D.

          【答案】A

          【解析】

          先求出函數(shù)的解析式,根據(jù)題意,由零點,可以得方程,然后常變量分離,構(gòu)造函數(shù),利用新構(gòu)造函數(shù)的對稱性,得到之間的關(guān)系,再根據(jù)對數(shù)的運算性質(zhì),得到之間的關(guān)系,這樣可以把化簡成關(guān)于的代數(shù)式,最后利用換元法,基本不等式以及函數(shù)的單調(diào)性求出值域即可.

          當(dāng)時,所以有,因此有,所以函數(shù)的解析式為:,由題意可知:有四個不同的實數(shù)解,因此有:,設(shè)函數(shù),因此由可知:函數(shù)的圖象與函數(shù)的圖象有四個不同的交點,函數(shù)的圖象如下圖所示:

          要想函數(shù)的圖象與函數(shù)的圖象有四個不同的交點,必須有,此時有,再由,結(jié)合圖象可知:函數(shù)是關(guān)于直線對稱,因此有

          ,所以,令,令,顯然函數(shù)在上單調(diào)遞減,

          上單調(diào)遞增,

          ,.

          故選:A

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中AB兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

          交付金額(元)

          支付方式

          0,1000]

          1000,2000]

          大于2000

          僅使用A

          18

          9

          3

          僅使用B

          10

          14

          1

          (Ⅰ)從全校學(xué)生中隨機抽取1人,估計該學(xué)生上個月A,B兩種支付方式都使用的概率;

          (Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;

          (Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為,點在橢圓上,且滿足,當(dāng)變化時,給出下列三個命題:

          ①點的軌跡關(guān)于軸對稱;②的最小值為2;

          ③存在使得橢圓上滿足條件的點僅有兩個,

          其中,所有正確命題的序號是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,曲線C1,以O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心極坐標(biāo)為(3π),半徑為1的圓.

          1)求曲線C1的參數(shù)方程和C2的直角坐標(biāo)方程;

          2)設(shè)M,N分別為曲線C1,C2上的動點,求|MN|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (I)討論的單調(diào)性;

          II)若有兩個極值點,記過點的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知三棱柱ABCA1B1C1,平面A1ACC1⊥平面ABC,∠ABC90°,∠BAC30°,A1AA1CAC,EF分別是AC,A1B1的中點.

          1)證明:EFBC;

          2)求直線EF與平面A1BC所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          1)求的單調(diào)區(qū)間;

          2)設(shè),且有兩個極值點其中,求的最小值;

          3)證明:nN*n≥2).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=|xa|+|x+2|.

          1)若a1.解不等式fxx21;

          2)若a0,b0,c0.fx)的最小值為4bc.求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】祖暅原理冪勢既同,則積不容異中的指面積,即是高,意思是:若兩個等高的幾何體在所有等高處的水平截面的面積恒等,則這兩幾何體的體積相等.設(shè)夾在兩個平行平面之間的幾何體的體積分別為,它們被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則恒成立的(

          A.充分不必要條件B.必要不充分條件

          C.充要條件D.既不充分也不必要條件

          查看答案和解析>>

          同步練習(xí)冊答案