日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓 的右焦點(diǎn)為,不垂直軸且不過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn).

          1)若直線經(jīng)過(guò)點(diǎn),則直線、的斜率之和是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由;

          2)如果,原點(diǎn)到直線的距離為,求的取值范圍.

          【答案】(1)見解析;(2)d的取值范圍為.

          【解析】試題分析:(1)設(shè)直線,代入中得: ,由斜率公式表示出直線的斜率,結(jié)合韋達(dá)定理計(jì)算斜率之和,即可作出判斷;(2)設(shè)直線,代入中得: ,根據(jù)韋達(dá)定理,表示出直線的斜率,令斜率之積為,得出的關(guān)系,根據(jù)判別式得出的范圍,代入點(diǎn)到直線距離公式得出的關(guān)系,利用基本不等式得出的范圍.

          試題解析:(1)設(shè)直線,代入中得: .

          設(shè),

          又F(1,0),

          ,即直線FA、FB的斜率之和是定值0.

          (2)設(shè)直線,代入中得: .

          設(shè),

          ,則

          ,

          代入并化簡(jiǎn)得:

          代入判別式得恒成立,

          ,

          故d的取值范圍為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn) 在橢圓 上,過(guò)橢圓C的右焦點(diǎn)F且垂直于橢圓長(zhǎng)軸的弦長(zhǎng)為3.
          (1)求橢圓C的方程;
          (2)若MN是過(guò)橢圓C的右焦點(diǎn)F的動(dòng)弦(非長(zhǎng)軸),點(diǎn)T為橢圓C的左頂點(diǎn),記直線TM,TN的斜率分別為k1 , k2 . 問(wèn)k1k2是否為定值?若為定值,請(qǐng)求出定值;若不為定值,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)橢圓E: 過(guò) 兩點(diǎn),O為坐標(biāo)原點(diǎn)
          (1)求橢圓E的方程;
          (2)是否存在圓心在原點(diǎn)的圓,使該圓的任意一條切線與橢圓E 恒有兩個(gè)交點(diǎn)A、B,且 ?若存在,寫出該圓的方程;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是某算法的程序框圖,則程序運(yùn)行后輸出的結(jié)果是(

          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),則下列結(jié)論中正確的是__________

          平面

          ②平面平面;

          ③三棱錐的體積為定值

          ④存在某個(gè)位置使得異面直線成角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以, , , , 分組的頻率分布直方圖如圖.

          (1)求直方圖中的值;

          (2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);

          (3)在理科綜合分?jǐn)?shù)為, , , 的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在的學(xué)生中應(yīng)抽取多少人?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓滿足:①圓心在第一象限,截軸所得弦長(zhǎng)為2;②被軸分成兩段圓弧,其弧長(zhǎng)的比為;③圓心到直線的距離為.

          (Ⅰ)求圓的方程;

          (Ⅱ)若點(diǎn)是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)分別做圓的兩條切線,切點(diǎn)分別為, ,求證:直線過(guò)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx),gx)滿足關(guān)系gx)=fxfx),其中α是常數(shù).

          (1)設(shè)fx)=cosx+sinx,,求gx)的解析式;

          (2)設(shè)計(jì)一個(gè)函數(shù)fx)及一個(gè)α的值,使得

          (3)當(dāng)fx)=|sinx|+cosx,時(shí),存在x1,x2R,對(duì)任意xRgx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】給定下列四個(gè)命題:

          若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;

          若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直;

          垂直于同一直線的兩條直線相互平行;

          若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.

          其中,為真命題的是  

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案