日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù) .
          (1)若函數(shù) 處有極值 ,求 的值;
          (2)若對(duì)于任意的 上單調(diào)遞增,求 的最小值.

          【答案】
          (1)解:由
          于是,根據(jù)題意設(shè)有 ,
          解得
          當(dāng) 時(shí),所以函數(shù) ,所以函數(shù)有極值點(diǎn);
          當(dāng) 時(shí),所以函數(shù) ,所以無(wú)極值點(diǎn),
          所以
          (2)解:由題意知 對(duì)任意的 都成立,
          所以 對(duì)任意的 都成立,
          因?yàn)? ,所以 上為單調(diào)增函數(shù)或?yàn)槌?shù)函數(shù),
          ①當(dāng) 為常數(shù)函數(shù)時(shí), ;
          ②當(dāng) 為增函數(shù)時(shí), ,
          對(duì)任意 都成立,
          ,所以 時(shí), ,所以 ,
          所以 的最小值為
          【解析】(1)首先求出原函數(shù)的導(dǎo)函數(shù)代入數(shù)值求出關(guān)于a、b的方程組求解出值,分情況討論進(jìn)而得到導(dǎo)函數(shù)的方程故可求出判斷出 f ′ ( x ) >0從而得到足題意的a、b的值。(2)利用導(dǎo)函數(shù)判斷出原函數(shù)的單調(diào)性,再分情況討論當(dāng)函數(shù)為常函數(shù)和增函數(shù)時(shí)最值的情況進(jìn)而求出b的最小值。
          【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直角坐標(biāo)系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),圖中圓弧所在圓的圓心為點(diǎn)C,半徑為 ,且點(diǎn)P在圖中陰影部分(包括邊界)運(yùn)動(dòng).若 ,其中 ,則 的取值范圍是( )

          A.[2,3+ ]
          B.[2,3+ ]
          C.[3- , 3+ ]
          D.[3- , 3+ ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】過(guò) 軸上動(dòng)點(diǎn) 引拋物線 的兩條切線 , 、 為切點(diǎn),設(shè)切線 、 的斜率分別為 .

          (Ⅰ)求證: ;
          (Ⅱ)求證:直線 恒過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo);

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知ABC的面積為3,且滿足0≤≤6,設(shè)的夾角為θ.

          (1)θ的取值范圍;

          (2)求函數(shù)f(θ)=2sin2 (cos θ+sin θ)·(cos θ-sin θ)的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知ABC的角A,BC所對(duì)的邊分別為a,bc,設(shè)向量=(ab),=(sin B,sin A), =(b-2,a-2).

          (1),求證:ABC為等腰三角形;

          (2),邊長(zhǎng)c=2,∠C,求ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓 的中心在原點(diǎn)焦點(diǎn)在 軸上,離心率等于 ,它的一個(gè)頂點(diǎn)恰好是拋物線 的焦點(diǎn).

          (1)求橢圓 的焦點(diǎn);
          (2)已知點(diǎn) 在橢圓 上,點(diǎn) 是橢圓 上不同于 的兩個(gè)動(dòng)點(diǎn),且滿足: ,試問(wèn):直線 的斜率是否為定值?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形,下列結(jié)論中不正確的是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義在上的奇函數(shù)滿足,且在上是增函數(shù);

          定義行列式; 函數(shù) (其中).

          (1) 證明: 函數(shù)上也是增函數(shù);

          (2) 若函數(shù)的最大值為4,求的值;

          (3) 若記集合M={m|恒有g()<0},,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.

          (1)求{an}的通項(xiàng)公式.

          (2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問(wèn):b6與數(shù)列{an}的第幾項(xiàng)相等?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案