日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線l:mx-y+1-m=0與圓C:x2+(y-1)2=5交于A、B兩點;
          (Ⅰ)若數(shù)學(xué)公式,求直線l的傾斜角;
          (Ⅱ)求弦AB的中點M的軌跡方程;
          (Ⅲ)圓C上是否存在一點P使得△ABP為等邊三角形?若存在,求出P點坐標(biāo);不存在,請說明理由.

          解:(Ⅰ)圓心C(0,1)到直線的距離,
          所以,解得
          所以,傾角;…(4分)
          (Ⅱ)直線l過定點N(1,1),設(shè)動點M(x,y),則,
          所以(x,y-1)•(x-1,y-1)=0,化簡得;…(9分)
          (Ⅲ)不存在.假設(shè)存在符合條件的P點,則由△ABP是等邊三角形知,
          其外接圓與內(nèi)切圓的圓心均C(0,1),外接圓半徑,
          內(nèi)切圓半徑r等于圓心(0,1)到直線AB的距離,
          又由等邊三角形的性質(zhì)得,所以有,m無解,故不存在這樣的點P.…(13分)
          分析:(Ⅰ)直接利用,圓心到直線的距離,半徑滿足勾股定理,求出m的值,即可求直線l的傾斜角;
          (Ⅱ)設(shè)出動點坐標(biāo),利用垂直關(guān)系,數(shù)量積為0,直接求弦AB的中點M的軌跡方程;
          (Ⅲ)通過由△ABP是等邊三角形,其外接圓與內(nèi)切圓的圓心相同,通過外接圓半徑,內(nèi)切圓半徑r等于圓心到直線AB的距離,推出,方程無解,則不存在否則存在.
          點評:本題考查軌跡方程分求法,點到直線的距離公式的應(yīng)用,直線的傾斜角的求法,考查計算能力,轉(zhuǎn)化思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l:mx-y-2m-1=0,m是實數(shù).
          (I)直線l恒過定點P,求定點P的坐標(biāo);
          (II)若原點到直線l的距離是2,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l:mx+y-m=0 交圓C:x2+y2-4x-2y=0于A,B兩點,當(dāng)|AB|最短時,直線l的方程是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xoy中,已知“葫蘆”曲線C由圓弧C1與圓弧C2相接而成,兩相接點M,N均在直線y=-
          2
          3
          上.圓弧C1所在圓的圓心是坐標(biāo)原點O,半徑為r1=2;圓弧C2過點A(0,-6
          2
          ).
          (Ⅰ)求圓弧C2的方程;
          (Ⅱ)已知直線l:mx-y-3
          2
          =0與“葫蘆”曲線C交于E,F(xiàn)兩點.當(dāng)|EF|=4+4
          2
          時,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l:mx-y+1-m=0與圓C:x2+(y-1)2=5交于A、B兩點;
          (Ⅰ)若|AB|=
          17
          ,求直線l的傾斜角;
          (Ⅱ)求弦AB的中點M的軌跡方程;
          (Ⅲ)圓C上是否存在一點P使得△ABP為等邊三角形?若存在,求出P點坐標(biāo);不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省紹興一中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖,在平面直角坐標(biāo)系xoy中,已知“葫蘆”曲線C由圓弧C1與圓弧C2相接而成,兩相接點M,N均在直線y=-上.圓弧C1所在圓的圓心是坐標(biāo)原點O,半徑為r1=2;圓弧C2過點A(0,-6).
          (Ⅰ)求圓弧C2的方程;
          (Ⅱ)已知直線l:mx-y-3=0與“葫蘆”曲線C交于E,F(xiàn)兩點.當(dāng)|EF|=4+4時,求直線l的方程.

          查看答案和解析>>

          同步練習(xí)冊答案