日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)是定義在R內(nèi)的可導函數(shù),且f(x)=f (2-x),(x-1)f′(x)<0,若a=f(0),b=f(數(shù)學公式),c=f(3),則a,b,c的大小關系為


          1. A.
            a<b<c
          2. B.
            b<a<c
          3. C.
            c<b<a
          4. D.
            c<a<b
          D
          分析:由題意得對任意x∈R,都有f(x)=f(2-x)成立,得到函數(shù)的對稱軸為x=1,所以f(3)=f(-1).由當x∈(-∞,1)時,(x-1)f′(x)<0,得f′(x)>0,所以函數(shù)f(x)在(-∞,1)上單調(diào)遞增.比較自變量的大小即可得到函數(shù)值的大小.
          解答:由題意得:對任意x∈R,都有f(x)=f(2-x)成立,
          所以函數(shù)的對稱軸為x=1,所以f(3)=f(-1).
          因為(x-1)f′(x)<0,
          所以當x∈(-∞,1)時,f′(x)>0,
          所以函數(shù)f(x)在(-∞,1)上單調(diào)遞增.
          因為-1<0<,
          所以f(-1)<f(0)<f(),即f(3)<f(0)<f(),
          所以c<a<b.
          故選D.
          點評:解決此類問題的關鍵是熟練掌握函數(shù)的性質(zhì)如奇偶性、單調(diào)性、周期性、對稱性等,函數(shù)的性質(zhì)一直是各種考試考查的重點內(nèi)容.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          2x+2-x
          2
          ,g(x)=
          2x-2-x
          2
          ,
          (1)計算:[f(1)]2-[g(1)]2;
          (2)證明:[f(x)]2-[g(x)]2是定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=x+
          a
          x
          的定義域為(0,+∞),且f(2)=2+
          2
          2
          .設點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
          (1)求a的值.
          (2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
          (3)設O為坐標原點,求四邊形OMPN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)
          是f(x)圖象上的兩點,橫坐標為
          1
          2
          的點P滿足2
          OP
          =
          OM
          +
          ON
          (O為坐標原點).
          (Ⅰ)求證:y1+y2為定值;
          (Ⅱ)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,且n≥2,求Sn;
          (Ⅲ)已知an=
          1
          6
          ,                          n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
          (1)求證:y1+y2為定值;
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )(n∈N*,N≥2),求Sn;
          (3)在(2)的條件下,若an=
          1
          6
           ,n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          (n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

          查看答案和解析>>

          同步練習冊答案