日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分別為PA、BC的中點,且PD=
          2
          ,CD=1
          (1)求證:MN∥平面PCD;
          (2)求證:平面PAC⊥平面PBD;
          (3)求三棱錐P-ABC的體積.
          分析:(1)取AD中點E,連接ME,NE,結合已知條件,由三角形中位線定理可得ME∥PD,NE∥CD,由面面平行的判定定理易判斷出平面MNE∥平面PCD,再由面面平行的判定定理得到MN∥平面PCD;
          (2)由已知中底面ABCD是正方形,PD⊥底面ABCD,結合正方形的性質及線面垂直的性質,可得AC⊥BD,PD⊥AC,由線面垂直的判定定理得AC⊥平面PBD,再由面面垂直的判定定理可得平面PAC⊥平面PBD;
          (3)由已知中PD⊥平面ABCD,所以PD為三棱錐P-ABC的高,求出棱錐的底面面積和高的長度,代入棱錐體積公式,即可得到答案.
          解答:精英家教網(wǎng)解:(1)證明:取AD中點E,連接ME,NE,
          由已知M,N分別是PA,BC的中點,
          ∴ME∥PD,NE∥CD
          又ME,NE?平面MNE,ME∩NE=E,
          所以,平面MNE∥平面PCD,(2分)
          所以,MN∥平面PCD(4分)
          (2)ABCD為正方形,
          所以AC⊥BD,
          又PD⊥平面ABCD,所以PD⊥AC,(6分)
          所以AC⊥平面PBD,(8分)
          所以平面PAC⊥平面PBD(10分)
          (3)PD⊥平面ABCD,所以PD為三棱錐P-ABC的高
          三角形ABC為等腰直角三角形,
          所以三棱錐P-ABC的體積V=
          1
          3
          S△ABC•PD=
          1
          6
          (13分)
          點評:本題考查的知識點是直線與平面平行的判定,平面與平面垂直的判定,棱錐的體積,其中(1)的關鍵是得到平面MNE∥平面PCD,(2)的關鍵是證得AC⊥平面PBD,(3)的關鍵是由已知得到PD為三棱錐P-ABC的高.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
          2
          ,∠PAB=60°.
          (1)證明AD⊥PB;
          (2)求二面角P-BD-A的正切值大。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
          (1)求證:AG∥平面PEC;
          (2)求AE的長;
          (3)求二面角E-PC-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
          (Ⅰ)求證:平面PBD⊥平面PAC.
          (Ⅱ)求四棱錐P-ABCD的體積V.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
          (1)求證;平面ACE⊥面ABCD;
          (2)求三棱錐P-EDC的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
          (1)求二面角P-CD-A的平面角正切值,
          (2)求A到面PCD的距離.

          查看答案和解析>>

          同步練習冊答案