在平面直角坐標(biāo)系中,原點(diǎn)為
,拋物線
的方程為
,線段
是拋物線
的一條動(dòng)弦.
(1)求拋物線的準(zhǔn)線方程和焦點(diǎn)坐標(biāo)
;
(2)若,求證:直線
恒過(guò)定點(diǎn);
(3)當(dāng)時(shí),設(shè)圓
,若存在且僅存在兩條動(dòng)弦
,滿足直線
與圓
相切,求半徑
的取值范圍?
(1)準(zhǔn)線方程:,焦點(diǎn)坐標(biāo)
;(2)證明見(jiàn)解析;(3)
.
解析試題分析:(1)根據(jù)拋物線標(biāo)準(zhǔn)方程確定焦點(diǎn)在哪個(gè)軸上及開(kāi)口方向,焦點(diǎn)為,準(zhǔn)線方程為
;(2)本題實(shí)質(zhì)是直線與拋物線相交問(wèn)題,一般是設(shè)直線
方程為
,與拋物線方程聯(lián)立方程組,消去
可得
,再設(shè)
,則有
,
,而
,把剛才求出的
代入可得
的關(guān)系,本題中求得
為常數(shù),因此直線
A一定過(guò)定點(diǎn)
;(3)由(2)利用
可求出
的關(guān)系式,
,則
,而直線
與圓相切,則圓心到直線的距離
等于圓的半徑
,即
,由題意,作為關(guān)于
的方程,此方程只有兩解,設(shè)
,則有
,由于
在
時(shí)是減函數(shù),且
,即函數(shù)
在
時(shí)遞減
,在
時(shí)遞增
,因此為了保證
有兩解,即
只有一解,故要求
.
試題解析:(1)準(zhǔn)線方程: +2分 焦點(diǎn)坐標(biāo):
+4分
(2)設(shè)直線方程為
,
得
+6分
+8分
直線
過(guò)定點(diǎn)(0,2) +9分
(3)
+11分
+12分
令
當(dāng)
時(shí),
單調(diào)遞減,
+13分
當(dāng)時(shí),
單調(diào)遞增,
+14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖5,為坐標(biāo)原點(diǎn),雙曲線
和橢圓
均過(guò)點(diǎn)
,且以
的兩個(gè)頂點(diǎn)和
的兩個(gè)焦點(diǎn)為頂點(diǎn)的四邊形是面積為2的正方形.
(1)求的方程;
(2)是否存在直線,使得
與
交于
兩點(diǎn),與
只有一個(gè)公共點(diǎn),且
?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線的兩個(gè)焦點(diǎn)為
、
點(diǎn)
在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓
∶
的左、右焦點(diǎn)分別
、
焦距為
,且與雙曲線
共頂點(diǎn).
為橢圓
上一點(diǎn),直線
交橢圓
于另一點(diǎn)
.
(1)求橢圓的方程;
(2)若點(diǎn)的坐標(biāo)為
,求過(guò)
、
、
三點(diǎn)的圓的方程;
(3)若,且
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的一個(gè)焦點(diǎn)為
,且離心率為
.
(1)求橢圓方程;
(2)斜率為的直線
過(guò)點(diǎn)
,且與橢圓交于
兩點(diǎn),
為直線
上的一點(diǎn),若△
為等邊三角形,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:(
)的離心率為
,點(diǎn)(1,
)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點(diǎn)M(4,),其中
,切點(diǎn)分別是A、B,試?yán)媒Y(jié)論:在橢圓
上的點(diǎn)(
)處的橢圓切線方程是
,證明直線AB恒過(guò)橢圓的右焦點(diǎn)
;
(3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知A、B為拋物線C:y2 = 4x上的兩個(gè)動(dòng)點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限l1、l2分別過(guò)點(diǎn)A、B且與拋物線C相切,P為l1、l2的交點(diǎn).
(1)若直線AB過(guò)拋物線C的焦點(diǎn)F,求證:動(dòng)點(diǎn)P在一條定直線上,并求此直線方程;
(2)設(shè)C、D為直線l1、l2與直線x = 4的交點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
,它的一個(gè)焦點(diǎn)恰好與拋物線
的焦點(diǎn)重合.
求橢圓的方程;
設(shè)橢圓的上頂點(diǎn)為,過(guò)點(diǎn)
作橢圓
的兩條動(dòng)弦
,若直線
斜率之積為
,直線
是否一定經(jīng)過(guò)一定點(diǎn)?若經(jīng)過(guò),求出該定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知圓E ,點(diǎn)
,P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動(dòng)點(diǎn)Q的軌跡的方程;
(2)點(diǎn),
,點(diǎn)G是軌跡
上的一個(gè)動(dòng)點(diǎn),直線AG與直線
相交于點(diǎn)D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com