日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系中,原點(diǎn)為,拋物線的方程為,線段是拋物線的一條動(dòng)弦.
          (1)求拋物線的準(zhǔn)線方程和焦點(diǎn)坐標(biāo);
          (2)若,求證:直線恒過(guò)定點(diǎn);
          (3)當(dāng)時(shí),設(shè)圓,若存在且僅存在兩條動(dòng)弦,滿足直線與圓相切,求半徑的取值范圍?

          (1)準(zhǔn)線方程:,焦點(diǎn)坐標(biāo);(2)證明見(jiàn)解析;(3).

          解析試題分析:(1)根據(jù)拋物線標(biāo)準(zhǔn)方程確定焦點(diǎn)在哪個(gè)軸上及開(kāi)口方向,焦點(diǎn)為,準(zhǔn)線方程為;(2)本題實(shí)質(zhì)是直線與拋物線相交問(wèn)題,一般是設(shè)直線方程為,與拋物線方程聯(lián)立方程組,消去可得,再設(shè),則有,而,把剛才求出的代入可得的關(guān)系,本題中求得為常數(shù),因此直線A一定過(guò)定點(diǎn);(3)由(2)利用可求出的關(guān)系式,
          ,則,而直線與圓相切,則圓心到直線的距離等于圓的半徑,即,由題意,作為關(guān)于的方程,此方程只有兩解,設(shè),則有,由于時(shí)是減函數(shù),且,即函數(shù)時(shí)遞減,在時(shí)遞增,因此為了保證有兩解,即只有一解,故要求.
          試題解析:(1)準(zhǔn)線方程:    +2分   焦點(diǎn)坐標(biāo):   +4分
          (2)設(shè)直線方程為 ,
           得        +6分
                +8分
            直線 過(guò)定點(diǎn)(0,2)   +9分
          (3)      +11分
            +12分     令
            當(dāng)時(shí), 單調(diào)遞減,  +13分
          當(dāng)時(shí), 單調(diào)遞增,   +14分

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖5,為坐標(biāo)原點(diǎn),雙曲線和橢圓均過(guò)點(diǎn),且以的兩個(gè)頂點(diǎn)和的兩個(gè)焦點(diǎn)為頂點(diǎn)的四邊形是面積為2的正方形.
          (1)求的方程;
          (2)是否存在直線,使得交于兩點(diǎn),與只有一個(gè)公共點(diǎn),且?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知雙曲線的兩個(gè)焦點(diǎn)為、點(diǎn)在雙曲線C上.
          (1)求雙曲線C的方程;
          (2)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在平面直角坐標(biāo)系中,已知橢圓的左、右焦點(diǎn)分別、焦距為,且與雙曲線共頂點(diǎn).為橢圓上一點(diǎn),直線交橢圓于另一點(diǎn)
          (1)求橢圓的方程;
          (2)若點(diǎn)的坐標(biāo)為,求過(guò)、、三點(diǎn)的圓的方程;
          (3)若,且,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓的一個(gè)焦點(diǎn)為,且離心率為
          (1)求橢圓方程;
          (2)斜率為的直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),為直線上的一點(diǎn),若△為等邊三角形,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓C:( )的離心率為,點(diǎn)(1,)在橢圓C上.
          (1)求橢圓C的方程;
          (2)若橢圓C的兩條切線交于點(diǎn)M(4,),其中,切點(diǎn)分別是A、B,試?yán)媒Y(jié)論:在橢圓上的點(diǎn)()處的橢圓切線方程是,證明直線AB恒過(guò)橢圓的右焦點(diǎn)
          (3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知A、B為拋物線C:y2 = 4x上的兩個(gè)動(dòng)點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限l1、l2分別過(guò)點(diǎn)A、B且與拋物線C相切,P為l1、l2的交點(diǎn).
          (1)若直線AB過(guò)拋物線C的焦點(diǎn)F,求證:動(dòng)點(diǎn)P在一條定直線上,并求此直線方程;
          (2)設(shè)C、D為直線l1、l2與直線x = 4的交點(diǎn),求面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它的一個(gè)焦點(diǎn)恰好與拋物線的焦點(diǎn)重合.
          求橢圓的方程;
          設(shè)橢圓的上頂點(diǎn)為,過(guò)點(diǎn)作橢圓的兩條動(dòng)弦,若直線斜率之積為,直線是否一定經(jīng)過(guò)一定點(diǎn)?若經(jīng)過(guò),求出該定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知圓E ,點(diǎn),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
          (1)求動(dòng)點(diǎn)Q的軌跡的方程;
          (2)點(diǎn),點(diǎn)G是軌跡上的一個(gè)動(dòng)點(diǎn),直線AG與直線相交于點(diǎn)D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>