日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè),函數(shù) 
          (1)當(dāng)時(shí),求曲線處的切線方程;
          (2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
          (3)當(dāng)時(shí),求函數(shù)的最小值

          (1) ;(2) 內(nèi)單調(diào)遞減,內(nèi)單調(diào)遞增;
          (3) 

          解析試題分析:(1)寫出函數(shù)的解析式,求導(dǎo)得斜率,求切點(diǎn),進(jìn)而得直線方程,注意解析式的取舍(時(shí));(2)函數(shù)為分段函數(shù),分段判單調(diào)性,求出函數(shù)的單調(diào)區(qū)間;(3)分兩種情況進(jìn)行分析,在第二種情況下要對(duì)與區(qū)間進(jìn)行比較,又分三種情況進(jìn)行判斷單調(diào)性,求最小值
          試題解析:(1)當(dāng)時(shí),,令,
          所以切點(diǎn)為,切線斜率為1,
          所以曲線處的切線方程為: 
          (2)當(dāng)時(shí)
          當(dāng)時(shí),,
          內(nèi)單調(diào)遞減,內(nèi)單調(diào)遞增;
          當(dāng)時(shí),恒成立,故內(nèi)單調(diào)遞增;
          綜上,內(nèi)單調(diào)遞減,內(nèi)單調(diào)遞增.
          (3)①當(dāng)時(shí), 
          ,恒成立. 上增函數(shù).
          故當(dāng)時(shí),
          ② 當(dāng)時(shí),,

          ⅰ)當(dāng),即時(shí),時(shí)為正數(shù),所以函數(shù)上為增函數(shù),
          故當(dāng)時(shí),,且此時(shí) 
          ⅱ)當(dāng),即時(shí),時(shí)為負(fù)數(shù),在時(shí)為正數(shù),
          所以上為減函數(shù),在為增函數(shù)
          故當(dāng)時(shí),,且此時(shí) 
          ⅲ)當(dāng),即時(shí),時(shí)為負(fù)數(shù),所以函數(shù)上為減函數(shù),
          故當(dāng)時(shí), 
          綜上所述,當(dāng)時(shí),函數(shù)時(shí)的最小值都是 
          所以此時(shí)函數(shù)的最小值為;當(dāng)時(shí),函數(shù)

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (Ⅰ)如果函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍;
          (Ⅱ)是否存在正實(shí)數(shù),使得函數(shù)在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn)(是自然對(duì)數(shù)的底數(shù))?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)若函數(shù)處的切線垂直軸,求的值;
          (Ⅱ)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
          (Ⅲ)討論函數(shù)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (1)若,對(duì)一切恒成立,求的最大值;
          (2)設(shè),且、是曲線上任意兩點(diǎn),若對(duì)任意,直線的斜率恒大于常數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),
          (1)討論函數(shù)的單調(diào)性;
          (2)證明:若,則對(duì)于任意。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分13分)已知函數(shù).
          (1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
          (2)記函數(shù),若的最小值是,求函數(shù)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          ,其中.
          (1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;
          (2)當(dāng)時(shí),若恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求的延長(zhǎng)線上,的延長(zhǎng)線上,且對(duì)角線點(diǎn).已知米,米。

          (1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
          (2)若(單位:米),則當(dāng),的長(zhǎng)度分別是多少時(shí),花壇的面積最大?并求出最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)求函數(shù)的單調(diào)區(qū)間;
          (2)若在區(qū)間[0,2]上恒有,求的取值范圍.

          查看答案和解析>>