日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知長(zhǎng)方形ABCD中,AB=1,AD=。現(xiàn)將長(zhǎng)方形沿對(duì)角線BD折起,使AC=a,得到一個(gè)四面體ABCD,如圖所示.

          (1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應(yīng)的a值;若不垂直,請(qǐng)說明理由.

          (2)當(dāng)四面體ABCD的體積最大時(shí),求二面角ACDB的余弦值.

          【答案】見解析

          【解析】

          解:(1)若AB⊥CD,因?yàn)锳B⊥AD,AD∩CD=D,

          所以AB⊥平面ACD,所以AB⊥AC.

          即AB2+a2=BC2,即12+a2=()2,所以a=1。

          若AD⊥BC,因?yàn)锳D⊥AB,

          所以AD⊥平面ABC,所以AD⊥AC.

          即AD2+a2=CD2,即()2+a2=12

          所以a2=-1,無解.

          故AD⊥BC不成立.

          (2)要使四面體ABCD的體積最大,因?yàn)椤鰾CD的面積為定值

          所以只需三棱錐ABCD的高最大即可,此時(shí)平面ABD⊥平面BCD,

          過點(diǎn)A作AO⊥BD于點(diǎn)O,

          則AO⊥平面BCD,

          以O(shè)為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系Oxyz(如圖),

          則易知A,C(,,0),D,

          顯然,平面BCD的一個(gè)法向量為

          設(shè)平面ACD的法向量為n=(x,y,z).

          因?yàn)?/span>,,

          所以令y=,得n=(1,,2).

          故二面角ACDB的余弦值為|cos〈,n〉|=。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的參數(shù)方程為為參數(shù),),直線的參數(shù)方程為為參數(shù)).

          (1)點(diǎn)在曲線上,且曲線在點(diǎn)處的切線與直線垂直,求點(diǎn)的極坐標(biāo);

          (2)設(shè)直線與曲線有兩個(gè)不同的交點(diǎn),求直線的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

          甲說:“是作品獲得一等獎(jiǎng)”;

          乙說:“作品獲得一等獎(jiǎng)”;

          丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

          丁說:“是作品獲得一等獎(jiǎng)”.

          若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2S△ABC·.

          (1)求角B的大小;

          (2)若b=2,求a+c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求曲線處的切線方程;

          (2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

          (3)若,在上存在一點(diǎn),使得成立,

          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系下,曲線的方程為.

          1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

          2)設(shè)曲線和曲線的交點(diǎn)為,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,拋物線y2 (a+c)x與橢圓交于B,C兩點(diǎn),若四邊形ABFC是菱形,則橢圓的離心率等于( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)設(shè)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說明

          理由;

          (3)當(dāng)時(shí).證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)時(shí)取得極小值.

          1)求實(shí)數(shù)的值;

          2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?/span>?若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案