日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側面SAB為等邊三角形.AB=BC=2,CD=SD=1.

          (Ⅰ)證明:SD⊥平面SAB

          (Ⅱ)求AB與平面SBC所成角的大小.

          答案:
          解析:

            證明:(Ⅰ)取AB中點E,連結DE,則四邊形BCDE為矩形,DE=CB=2.

            連結SE,則

            又SD=1,故

            所以為直角.

            由,得

            ,所以

            SD與兩條相交直線AB、SE都垂直.

            所以

            (Ⅱ)由知,

            作,垂足為F,則,

            作,垂足為G,則FG=DC=1.

            連結SG,則

            又,,故,

            作,H為垂足,則

            

            即F到平面SBC的距離為

            由于ED//BC,所以ED//平面SBC,E到平面SBC的距離d也為

            設AB與平面SBC所成的角為,則,

            解法二:

            以C為坐標原點,射線CD為x軸正半軸,建立如圖所示的直角坐標系C-xyz,設D(1,0,0),則A(2,2,0),B(0,2,0).

            又設S(x,y,z),則x>0,y>0,z>0.

            (Ⅰ)

            由

            故x=1.

            由,

            又由得,

            即,故

            于是,

            

            故,又

            所以

            (Ⅱ)設平面SBC的法向量

            則

            又

            故

            取p=2得,又

            

            故AB與平面SBC所成的角為


          提示:

            第(Ⅰ)問的證明的突破口是利用等邊三角形SAB這個條件,找出AB的中點E,連結SE,DE,就做出了解決這個問題的關鍵輔助線.

            (Ⅱ)本題直接找線面角不易找出,要找到與AB平行的其它線進行轉移求解.


          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC⊥平面SBC.
          (Ⅰ)證明:SE=2EB;
          (Ⅱ)求二面角A-DE-C的大。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是邊長為3的正方形,SD丄底面ABCD,SB=3
          3
          ,點E、G分別在AB,SG 上,且AE=
          1
          3
          AB  CG=
          1
          3
          SC.
          (1)證明平面BG∥平面SDE;
          (2)求面SAD與面SBC所成二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•醴陵市模擬)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點,AD=2,AB=1.SP與平面ABCD所成角為
          π4
          . 
          (1)求證:平面SPD⊥平面SAP;
          (2)求三棱錐S-APD的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,四棱錐S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一點,且SE=2EC,SA=6,AB=2.
          (1)求證:平面EBD⊥平面SAC;
          (2)求三棱錐E-BCD的體積V.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2006•西城區(qū)二模)如圖,四棱錐S-ABCD中,平面SAC與底面ABCD垂直,側棱SA、SB、SC與底面ABCD所成的角均為45°,AD∥BC,且AB=BC=2AD.
          (1)求證:四邊形ABCD是直角梯形;
          (2)求異面直線SB與CD所成角的大;
          (3)求直線AC與平面SAB所成角的大。

          查看答案和解析>>

          同步練習冊答案