【題目】已知函數(shù),(
).
(Ⅰ)若有最值,求實(shí)數(shù)
的取值范圍;
(Ⅱ)當(dāng)時(shí),若存在
、
(
),使得曲線(xiàn)
在
與
處的切線(xiàn)互相平行,求證:
.
【答案】(Ⅰ);(Ⅱ)證明過(guò)程見(jiàn)解析
【解析】試題分析:(Ⅰ)求出原函數(shù)的導(dǎo)函數(shù),通分整理后得到,然后根據(jù)二次三項(xiàng)式
對(duì)應(yīng)方程根的情況分析導(dǎo)函數(shù)的符號(hào),從而得到導(dǎo)函數(shù)的單調(diào)性,利用原函數(shù)的單調(diào)性求得使
有最值的實(shí)數(shù)
的取值范圍;(Ⅱ)由曲線(xiàn)
在
與
處的導(dǎo)函數(shù)相等得到
,由已知
得到
,結(jié)合不等式
可證得答案.
試題解析:(Ⅰ)∵,(
),
∴,
.
由對(duì)應(yīng)的方程的
知,
①當(dāng)時(shí),
,
在
上遞增,無(wú)最值;
②當(dāng)時(shí),
的兩根均非正,
因此, 在
上遞增,無(wú)最值;
③當(dāng)時(shí),
有一正根
,
當(dāng)時(shí),
,
在
上遞減,
當(dāng)時(shí),
,
在
上遞增.
此時(shí)有最小值.
∴實(shí)數(shù)的范圍為
;
(Ⅱ)證明:依題意: ,
整理得: ,
由于,
,且
,則有
,
∴
∴,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱臺(tái)中,
底面
,四邊形
為菱形,
,
.
(Ⅰ)若為
中點(diǎn),求證:
平面
;
(Ⅱ)求直線(xiàn)與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,(
為常數(shù))
(1)若在
處的切線(xiàn)方程為
(
為常數(shù)),求
的值;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為
,若存在唯一的實(shí)數(shù)
,使得
與
同時(shí)成立,求實(shí)數(shù)
的取值范圍;
(3)令,若函數(shù)
存在極值,且所有極值之和大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)
的極坐標(biāo)方程為
.
(1)寫(xiě)出的普通方程和
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在
上,點(diǎn)
在
上,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月16日摩拜單車(chē)進(jìn)駐大連市旅順口區(qū),綠色出行引領(lǐng)時(shí)尚,旅順口區(qū)對(duì)市民進(jìn)行“經(jīng)常使用共享單車(chē)與年齡關(guān)系”的調(diào)查統(tǒng)計(jì),若將單車(chē)用戶(hù)按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類(lèi),抽取一個(gè)容量為200的樣本,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱(chēng)為“經(jīng)常使用單車(chē)用戶(hù)”。使用次數(shù)為5次或不足5次的稱(chēng)為“不常使用單車(chē)用戶(hù)”,已知“經(jīng)常使用單車(chē)用戶(hù)”有120人,其中是“年輕人”,已知“不常使用單車(chē)用戶(hù)”中有
是“年輕人”.
(1)請(qǐng)你根據(jù)已知的數(shù)據(jù),填寫(xiě)下列列聯(lián)表:
年輕人 | 非年輕人 | 合計(jì) | |
經(jīng)常使用單車(chē)用戶(hù) | |||
不常使用單車(chē)用戶(hù) | |||
合計(jì) |
(2)請(qǐng)根據(jù)(1)中的列聯(lián)表,計(jì)算值并判斷能否有
的把握認(rèn)為經(jīng)常使用共享單車(chē)與年齡有關(guān)?
(附:
當(dāng)時(shí),有
的把握說(shuō)事件
與
有關(guān);當(dāng)
時(shí),有
的把握說(shuō)事件
與
有關(guān);當(dāng)
時(shí),認(rèn)為事件
與
是無(wú)關(guān)的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為美化小區(qū)環(huán)境,某社區(qū)針對(duì)公民亂扔垃圾的現(xiàn)象進(jìn)行了罰款處罰,并隨機(jī)抽取了200人進(jìn)行調(diào)查,得到如下數(shù)據(jù):
(1)若亂扔垃圾的人數(shù)與罰款金額
(單位:元)滿(mǎn)足線(xiàn)性回歸關(guān)系,求回歸方程;
(2)由(1)得到的回歸方程分析要使亂扔垃圾的人數(shù)不超過(guò),罰款金額至少是多少元?
參考公式:兩個(gè)具有線(xiàn)性關(guān)系的變量的一組數(shù)據(jù): ,
其回歸方程為,其中
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某教師有相同的語(yǔ)文參考書(shū)3本,相同的數(shù)學(xué)參考書(shū)4本,從中取出4本贈(zèng)送給4位學(xué)生,每位學(xué)生1本,則不同的贈(zèng)送方法共有( )
A. 15種 B. 20種 C. 48種 D. 60種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次抽樣調(diào)查中測(cè)得樣本的6組數(shù)據(jù),得到一個(gè)變量關(guān)于
的回歸方程模型,其對(duì)應(yīng)的數(shù)值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)請(qǐng)用相關(guān)系數(shù)加以說(shuō)明
與
之間存在線(xiàn)性相關(guān)關(guān)系(當(dāng)
時(shí),說(shuō)明
與
之間具有線(xiàn)性相關(guān)關(guān)系);
(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于
的回歸方程并預(yù)測(cè)當(dāng)
時(shí),對(duì)應(yīng)的
值為多少(
精確到
).
附參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:
,
,相關(guān)系數(shù)
公式為:
.
參考數(shù)據(jù):
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求
的單調(diào)區(qū)間;
(2)設(shè),
是曲線(xiàn)
圖象上的兩個(gè)相異的點(diǎn),若直線(xiàn)
的斜率
恒成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)有兩個(gè)極值點(diǎn)
,
,且
,若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com