日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:數(shù)學(xué)公式).
          (1)討論f(x)的單調(diào)性.
          (2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

          解:(1)函數(shù)f(x)的定義域?yàn)椋?1,+∞),
          f′(x)=2x+==
          ①當(dāng)a≥時(shí),f′(x)>0,f(x)在(-1,+∞)上單調(diào)遞增;
          ②當(dāng)a<時(shí),f′(x)=0有兩個(gè)解,,,且x1<x2,
          若x1>-1,即0<a<時(shí),-1<x1<x2,此時(shí)f(x)在(-1,x1),(x2,+∞)上單調(diào)遞增,在(x1,x2)上單調(diào)遞減;
          若x1≤-1,即a≤0時(shí),x1≤-1<x2,此時(shí)f(x)在(-1,x2)上單調(diào)遞減,在(x2,+∞)上單調(diào)遞增;
          (2)由(1)知:當(dāng)0<a<時(shí)f(x)有兩個(gè)極值點(diǎn),,x1<x2
          則f(x2)=+aln(+1),令t=,0<t<1,a=,
          f(x2)=+ln,令g(t)=+ln(0<t<1),g′(t)=-tln>0,
          所以g(t)在(0,1)上為增函數(shù),所以g(0)<g(t)<g(1),即+<g(t)<0,
          故f(x2)的取值范圍為(+,0).
          分析:(1)先求函數(shù)f(x)的定義域,再求導(dǎo)數(shù)f′(x),由于含參數(shù)a,分類討論解不等式f′(x)>0,f′(x)<0即;
          (2)由(1)知存在兩個(gè)極值點(diǎn)時(shí)a的范圍,表示出f(x2),構(gòu)造函數(shù),利用導(dǎo)數(shù)即可求得其最值,從而得到取值范圍;
          點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及函數(shù)最值問(wèn)題,考查分類討論思想,考查學(xué)生綜合運(yùn)用所學(xué)知識(shí)分析解決問(wèn)題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
          (1)判斷函數(shù)f(x)的奇偶性;
          (2)求函數(shù)f(x)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
          1x+1
          ).
          (1)討論f(x)的單調(diào)性.
          (2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
          (1)若曲線y=f(x)在x=1處的切線為y=x,求實(shí)數(shù)m的值;
          (2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
          (3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
          (1)若a=-6,求f(x)在[0,3]上的最值;
          (2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
          (3)求證:不等式ln
          n+1
          n
          n-1
          n3
          (n∈N*)恒成立.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案