(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)M為橢圓上任意一點(diǎn),且,證明
為定值。
(21)(Ⅰ)解:設(shè)橢圓方程為=1(a>b>0),F(c,0),
則直線AB的方程為y=x-c,
代入=1,化簡(jiǎn)得
(a2+b2)x2-2a2cx+a2c2-a2b2=0.
令A(yù)(x1,y1),B(x2,y2),
則 x1+x2=.
由=(x1+x2,y1+y2),a=(3,-1),
與a共線,得
3(y1+y2)+(x1+x2)=0。
又y1=x1-c,y2=x2-c,
∴3(x1+x2-2c)+(x1+x2)=0,
∴x1+x2=.
即 所以a2=3b2.
∴ c=,
故離心率e=
(Ⅱ)證明:由(Ⅰ)知a2=3b2,所以橢圓=1可化為x2+3y2=3b2.
設(shè)=(x,y),由已知得
(x,y)=(x1,y1)+μ(x2,y2),
∴M(x,y)在橢圓上,
∴(x1+μx2)2+3(
y1+μy2)2=3b2.
即 2(x
+3y
)+μ2(x
+3y
)+2
μ(x1x2+3y1y2)=3b2. ①
由(Ⅰ)知x1+x2=c,a2=
c2,b2=
c2.
∴x1x2=
∴x1x2+3y1y2=x1x2+3(x1-c)(x2-c)
=4x1x2-3(x1+x2)c+3c2
=c2-
c2+3c2
=0.
又x+3y
=3b2,x
+3y
=3b2,代入①得
2+μ2=1。
故2+μ2為定值,定值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
y2 |
9 |
π |
2 |
π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
己知在銳角ΔABC中,角所對(duì)的邊分別為
,且
(I )求角大;
(II)當(dāng)時(shí),求
的取值范圍.
20.如圖1,在平面內(nèi),是
的矩形,
是正三角形,將
沿
折起,使
如圖2,
為
的中點(diǎn),設(shè)直線
過點(diǎn)
且垂直于矩形
所在平面,點(diǎn)
是直線
上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)
位于平面
的同側(cè)。
(1)求證:平面
;
(2)設(shè)二面角的平面角為
,若
,求線段
長(zhǎng)的取值范圍。
![]() |
21.已知A,B是橢圓的左,右頂點(diǎn),
,過橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線
于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù)
,
(Ⅰ)若在
上存在最大值與最小值,且其最大值與最小值的和為
,試求
和
的值。
(Ⅱ)若為奇函數(shù):
(1)是否存在實(shí)數(shù),使得
在
為增函數(shù),
為減函數(shù),若存在,求出
的值,若不存在,請(qǐng)說明理由;
(2)如果當(dāng)時(shí),都有
恒成立,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知點(diǎn),過點(diǎn)
作拋物線
的切線
,切點(diǎn)
在第二象限,如圖.
(Ⅰ)求切點(diǎn)
的縱坐標(biāo);
(Ⅱ)若離心率為的橢圓
恰好經(jīng)過切點(diǎn)
,設(shè)切線
交橢圓的另一點(diǎn)為
,記切線
的斜率分別為
,若
,求橢圓方程.
21(本小題滿分12分)
已知函數(shù) .
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),
恒成立,求實(shí)數(shù)
的取值范圍;
(3)證明:.
22.選修4-1:幾何證明選講
如圖,是圓
的直徑,
是弦,
的平分線
交圓
于點(diǎn)
,
,交
的延長(zhǎng)線于點(diǎn)
,
交
于點(diǎn)
。
(1)求證:
是圓
的切線;
(2)若,求
的值。
23.選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線過點(diǎn)
且傾斜角為
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,直線
與曲線
相交于
兩點(diǎn);
(1)若,求直線
的傾斜角
的取值范圍;
(2)求弦最短時(shí)直線
的參數(shù)方程。
24. 選修4-5 不等式選講
已知函數(shù)
(I)試求的值域;
(II)設(shè),若對(duì)
,恒有
成立,試求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市海門中學(xué)高三(上)開學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市海門中學(xué)高三(上)開學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com