日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在三棱錐S-ABC中,若底面ABC是邊長等于2
          3
          的正三角形,SA與底面ABC垂直,SA=6,點M,N分別為SB,AC的中點,則異面直線MN與BC所成角的大小為
          60°
          60°
          分析:取AB的中點D,連結(jié)MD,DN,則DN∥BC,所以MN與DN所成的角即為異面直線MN與BC所成角,然后根據(jù)邊角關(guān)系進行求解即可.
          解答:解:取AB的中點D,連結(jié)MD,DN,因為M,N分別為SB,AC的中點,所以DN為三角形ABC的中位線,
          所以DN∥BC,且DN=
          1
          2
          BC=
          1
          2
          ×2
          3
          =
          3
          ,所以MN與DN所成的角即為異面直線MN與BC所成角,
          因為SA與底面ABC垂直,所以DM∥SA,所以DM⊥ABC,
          即DM⊥DN,所以三角形MDN為直角三角形.
          因為DM=
          1
          2
          SA=
          1
          2
          ×6=3
          ,所以在直角三角形MDN中,
          tanMDN=
          DM
          DN
          =
          3
          3
          =
          3
          ,所以∠MDN=60°,
          故異面直線MN與BC所成角的大小為60°
          故答案為:60°
          點評:本題主要考查異面直線所成角的求法,利用平行直線將異面直線轉(zhuǎn)化為共面直線的夾角是解決異面直線所成角的常用方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為邊長為1的等邊三角形,∠BAC=90°,O為BC中點.
          (Ⅰ)證明:SO⊥平面ABC;
          (Ⅱ)證明:SA⊥BC;
          (Ⅲ)求三棱錐S-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=90°,O為BC中點.
          (Ⅰ)證明:SO⊥平面ABC;
          (Ⅱ)求二面角A-SC-B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
          3


          (Ⅰ)求證SA⊥SC;
          (Ⅱ)在平面幾何中,推導(dǎo)三角形內(nèi)切圓的半徑公式r=
          2S
          l
          (其中l(wèi)是三角形的周長,S是三角形的面積),常用如下方法(如右圖):
          ①以內(nèi)切圓的圓心O為頂點,將三角形ABC分割成三個小三角形:△OAB,△OAC,△OB精英家教網(wǎng)C.
          ②設(shè)△ABC三邊長分別為a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB,
          S=
          1
          2
          ar+
          1
          2
          br+
          1
          2
          cr
          =
          1
          2
          lr
          ,則r=
          2S
          l

          類比上述方法,請給出四面體內(nèi)切球半徑的計算公式(不要求說明類比過程),并利用該公式求出三棱錐S-ABC內(nèi)切球的半徑.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐S-ABC中,SA=AB=BC=AC=
          2
          SB=
          2
          SC
          ,O為BC中點.
          (1)求證:SO⊥平面ABC
          (2)在線段AB上是否存在一點E,使二面角B-SC-E的平面角的余弦值為
          15
          5
          ?若存在,確定E點位置;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在三棱錐S-ABC中,側(cè)棱SC⊥平面SAB,SA⊥BC,側(cè)面△SAB,△SBC,△SAC的面積分別為1,
          3
          2
          ,3,則此三棱錐的外接球的表面積為( 。

          查看答案和解析>>

          同步練習(xí)冊答案