日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)

          (理)已知數(shù)列{a中,a=5且a=3a(n≥2)

          (1)求a的值.

          (2)設b=,是否存在實數(shù)λ,使數(shù)列{b為等差數(shù)列,若存在請求其通項b,若不存在請說明理由.

           

          【答案】

          (1)同解析2)設存在實數(shù)λ=-, b

          【解析】(1)a=23    a=95

          2)設存在實數(shù)λ滿足題意由b=2b

          即9(5+λ)+95+λ=6(23+λ)

          ∴λ=-

          當n≥2時

          b

          ∴{b是等差數(shù)列

          ∵首項b=  公差d=1

          ∴b×1   即b

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
          3
          sin2x+2sin(
          π
          4
          +x)cos(
          π
          4
          +x)

          (I)化簡f(x)的表達式,并求f(x)的最小正周期;
          (II)當x∈[0,
          π
          2
          ]  時,求函數(shù)f(x)
          的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

          (本小題滿分14分)
          已知=2,點()在函數(shù)的圖像上,其中=.
          (1)證明:數(shù)列}是等比數(shù)列;
          (2)設,求及數(shù)列{}的通項公式;
          (3)記,求數(shù)列{}的前n項和,并證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

           (本小題滿分14分)

          某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

          (Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

          (Ⅱ)求該商品第7天的利潤;

          (Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

          (本小題滿分14分)已知的圖像在點處的切線與直線平行.

          ⑴ 求,滿足的關系式;

          ⑵ 若上恒成立,求的取值范圍;

          ⑶ 證明:

           

          查看答案和解析>>

          同步練習冊答案