日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,滿足an2=Sn+Sn-1(n≥2),a1=1.
          (I)求證:數(shù)列{an}為等差數(shù)列,并求出通項(xiàng)公式;
          (II)設(shè)bn=(1-an2-a(1-an),若bn+1>bn對(duì)任意n∈N*恒成立,求實(shí)數(shù)a的取值范圍.
          分析:(I)由 an2=Sn+Sn-1(n≥2),可得an-12=sn-1+sn-2 (n≥3).兩式相減可得 an -an-1=1,再由a1=1,可得{an}的通項(xiàng)公式.
          (II)根據(jù){an}的通項(xiàng)公式化簡(jiǎn)bn和bn+1,由題意可得bn+1-bn=2n+a-1>0恒成立,故a>1-2n恒成立,而1-2n的最大值為-1,從而求得實(shí)數(shù)a的取值范圍.
          解答:解:(I)證明:∵an2=Sn+Sn-1(n≥2),∴an-12=sn-1+sn-2 (n≥3).
          兩式相減可得an2 -an-12=Sn-sn-2=an +an-1,∴an -an-1=1,
          再由a1=1,可得an=n.
          (II)∵bn=(1-an2-a(1-an),
          ∴bn+1=(1-an+1)2-a(1-an+1).
          即bn=(1-n)2-a(1-n)=n2+(a-2)n+1-a,bn+1=[1-(n+1)]2-a[1-(n+1)]=n2+an.
          故bn+1-bn=2n+a-1,
          再由bn+1>bn對(duì)任意n∈N*恒成立可得2n+a-1>0恒成立,故a>1-2n恒成立.
          而1-2n的最大值為1-2=-1,故a>-1,
          即實(shí)數(shù)a的取值范圍(-1,+∞).
          點(diǎn)評(píng):本題主要考查等差關(guān)系的確定,等差數(shù)列的通項(xiàng)公式,函數(shù)的恒成立問(wèn)題,屬于難題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正數(shù)數(shù)列{an}中,a1=2.若關(guān)于x的方程x2-(
          an+1
          )x+
          2an+1
          4
          =0(n∈N×))對(duì)任意自然數(shù)n都有相等的實(shí)根.
          (1)求a2,a3的值;
          (2)求證
          1
          1+a1
          +
          1
          1+a2
          +
          1
          1+a3
          +…+
          1
          1+an
          2
          3
          (n∈N×).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          10、已知正數(shù)數(shù)列{an}對(duì)任意p,q∈N*,都有ap+q=ap•aq,若a2=4,則a9=
          512

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正數(shù)數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足2
          Sn
          =an+1
          ,求an

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn2=a13+a23+…+an3
          (Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并求出通項(xiàng)公式;
          (Ⅱ)設(shè)bn=(1-
          1
          an
          2-a(1-
          1
          an
          ),若bn+1>bn對(duì)任意n∈N*恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正數(shù)數(shù)列{an}的前n項(xiàng)和Sn,且對(duì)任意的正整數(shù)n滿足2
          Sn
          =an+1

          (1)求數(shù)列{an}的通項(xiàng)公式
          (2)設(shè)bn=
          1
          anan+1
          ,數(shù)列{bn}的前n項(xiàng)和為Bn,求Bn范圍

          查看答案和解析>>

          同步練習(xí)冊(cè)答案