日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè){an}是首項為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項和.記bn,n∈N*,其中c為實數(shù).
          (1)若c=0,且b1,b2,b4成等比數(shù)列,證明:Snk=n2Sk(k,n∈N*);
          (2)若{bn}是等差數(shù)列,證明:c=0.
          (1)見解析(2)見解析
          ∵{an}是首項為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項和,
          ∴Sn=na+d.
          (1)∵c=0,∴bn=a+d.
          ∵b1,b2,b4成等比數(shù)列,∴=b1b4,
          ,∴ad-d2=0,∴d=0.
          ∵d≠0,∴a=d,∴d=2a,∴Sn=na+d=na+2a=n2a,
          ∴左邊=Snk=(nk)2a=n2k2a,右邊=n2Sk=n2k2a,
          ∴左邊=右邊,∴原式成立.
          (2)∵{bn}是等差數(shù)列,
          ∴設(shè)公差為d1,
          ∴bn=b1+(n-1)d1
          代入bn,得b1+(n-1)d1
          n3n2+cd1n=c(d1-b1)對n∈N*恒成立,
           ∴d1d.∵d≠0,∴d1≠0.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:填空題

          等差數(shù)列中共有奇數(shù)項,且此數(shù)列中的奇數(shù)項之和為,偶數(shù)項之和為,,則該數(shù)列的中間項等于_________.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          設(shè)等差數(shù)列的前項和為,若,,,則正整數(shù)=       

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          等差數(shù)列的前項和為,若,則       

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知數(shù)列{an}滿足a1+a2+…+an=n2(n∈N*).
          (1)求數(shù)列{an}的通項公式;
          (2)對任意給定的k∈N*,是否存在p,r∈N*(k<p<r)使,,成等差數(shù)列?若存在,用k分別表示p和r(只要寫出一組);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          設(shè)1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等
          比數(shù)列,a2,a4,a6成公差為1的等差數(shù)列,則q的最小值是________.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知等差數(shù)列{an}的公差d=1,前n項和為Sn.
          (1)若1,a1,a3成等比數(shù)列,求a1
          (2)若S5>a1a9,求a1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知數(shù)列{an}中,a1=8,a4=2,且滿足an+2+an=2an+1.
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)Sn是數(shù)列{|an|}的前n項和,求Sn.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          等差數(shù)列{an}中,a7=4,a19=2a9.
          (1)求{an}的通項公式;
          (2)設(shè)bn=,求數(shù)列{bn}的前n項和Sn.

          查看答案和解析>>

          同步練習冊答案