日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)滿足對任意的x,y∈R,都有f(x+y)=f(x)+f(y)且在區(qū)間[3,7]上是增函數(shù),在區(qū)間[4,6]上的最大值為1007,最小值為-2,則2f(-6)+f(-4)=( 。
          分析:先令x=y=0求得f(0)=0,再令y=-x,求得f(x)+f(-x)=0,從而判斷函數(shù)f(x)為奇函數(shù);利用奇函數(shù)在區(qū)間[3,7]上是增函數(shù),在區(qū)間[4,6]上的最大值為1007,最小值為-2,即可求得2f(-6)+f(-4)的值.
          解答:解:令x=y=0,得f(0)=f(0)+f(0),解得f(0)=0.
          令y=-x,得f(0)=f(x)+f(-x),
          故f(x)+f(-x)=0,
          所以函數(shù)f(x)為奇函數(shù).
          由函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù),可知函數(shù)f(x)在區(qū)間[4,6]上也是增函數(shù),
          故最大值為f(6)=1007,最小值為f(4)=-2.
          而f(-6)=-f(6)=-1007,f(-4)=-f(4)=2,
          所以2f(-6)+f(-4)=2×(-1007)+2=-2012.
          故選A
          點評:本題考查抽象函數(shù)及其應(yīng)用,著重考查賦值法的應(yīng)用,突出函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,考查分析與推理、運算能力,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
          1
          2

          (1)若n∈N*時,求f(n)的表達式;
          (2)設(shè)bn=
          nf(n+1)
          f(n)
            (n∈N*)
          ,sn=b1+b2+…+bn,求
          1
          s1
          +
          1
          s2
          +…+
          1
          sn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
          (1)當x≥0時,曲線y=f(x)在點M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
          (2)若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;
          (3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點個數(shù),并作出證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
          f2(1)+f(2)
          f(1)
          +
          f2(2)+f(4)
          f(3)
          +
          f2(3)+f(6)
          f(5)
          +
          f2(4)+f(8)
          f(7)
          =
          24.
          24.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•珠海二模)已知函數(shù)f(x)滿足:當x≥1時,f(x)=f(x-1);當x<1時,f(x)=2x,則f(log27)=( 。

          查看答案和解析>>

          同步練習冊答案