日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}中,如果存在常數(shù)T(T∈N+),使得an+T=an對于任意正整數(shù)均成立,那么就稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知周期數(shù)列{an}滿足xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),當(dāng)數(shù)列{xn}的周期為3時,則數(shù)列{xn}的前2015項的和S2015為( 。
          A、1344B、1343C、1342D、1341
          分析:依題意可求得a=1,于是可求得x1+x2+x3=2,x4+x5+x6=2,…x2011+x2012+x2013=2,x2014=x1,x2015=x2,于是可得S2015的值.
          解答:解:∵x1=1,x2=a(a≤1,a≠0),xn+2=|xn+1-xn|,
          ∴x3=|a-1|,又?jǐn)?shù)列{xn}的周期為3,
          ∴x4=|x3-x2|=||a-1|-a|=x1=1,
          解得:a=1或a=0,
          ∵a≠0,
          ∴a=1,
          ∴x1=1,x2=1,x3=0;
          即x1+x2+x3=2;
          同理可得,x4=1,x5=1,x6=0,
          x4+x5+x6=2;

          x2011+x2012+x2013=2;
          又x2014=x1=1,x2015=x2=1,2015=671×3+2,
          ∴S2015=x1+x2+x3+…+x2015
          =671×(1+1+0)+2
          =1344.
          故選:A.
          點(diǎn)評:本題考查數(shù)列的求和,著重考查函數(shù)的周期性,得到相鄰三項之和為2是關(guān)鍵,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          6、在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前10項的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語句是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          12、在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時,該數(shù)列的前2010項的和是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前5項的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處應(yīng)填
          i≥5
          i≥5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年廣東省佛山市南海區(qū)高考題例研究數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

          在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前10項的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語句是( )

          A.i≥8
          B.i≥9
          C.i≥10
          D.i≥11

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省舟山市七校高三(下)3月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

          在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時,該數(shù)列的前2010項的和是( )
          A.669
          B.670
          C.1339
          D.1340

          查看答案和解析>>

          同步練習(xí)冊答案