【題目】已知函數(shù)的圖象過點(diǎn)
和點(diǎn)
.
(1)求函數(shù)的最大值與最小值;
(2)將函數(shù)的圖象向左平移
個(gè)單位后,得到函數(shù)
的圖象;已知點(diǎn)
,若函數(shù)
的圖象上存在點(diǎn)
,使得
,求函數(shù)
圖象的對(duì)稱中心.
【答案】(1)的最大值為2,最小值為
;(2)
.
【解析】
(1)由行列式運(yùn)算求出,由函數(shù)圖象過兩點(diǎn),求出
,得函數(shù)解析式,化函數(shù)式為一個(gè)角的一個(gè)三角函數(shù)式,可求得最值;
(2)由圖象變換寫出表達(dá)式,它的最大值是2,因此要滿足條件,只有
在
圖象上,由此可求得
,結(jié)合余弦函數(shù)的性質(zhì)可求得對(duì)稱中心.
(1)易知,則由條件,得
,
解得 故
.
故函數(shù)的最大值為2,最小值為
(2)由(1)可知: .
于是,當(dāng)且僅當(dāng)在
的圖象上時(shí)滿足條件.
. 由
,得
故. 由
,得
于是,函數(shù)圖象的對(duì)稱中心為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,
,
,
的前
項(xiàng)和為
,且滿足
(
).
(1)試求數(shù)列的通項(xiàng)公式;
(2)令,
是
的前
項(xiàng)和,證明:
;
(3)證明:對(duì)任意給定的,均存在
,使得
時(shí),(2)中的
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列 的前
項(xiàng)和為
,對(duì)一切
,點(diǎn)
都在函數(shù)
的圖象上.
(1)求,歸納數(shù)列
的通項(xiàng)公式(不必證明);
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為
,
,
,
;
,
,
,
;
,…,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來括號(hào)的前后順序構(gòu)成的數(shù)列為
,求
的值;
(3)設(shè)為數(shù)列
的前
項(xiàng)積,若不等式
對(duì)一切
都成立,其中
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)在“精準(zhǔn)扶貧”行動(dòng)中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車每天費(fèi)用320元,乙型車每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖囌荆瑒t通過合理調(diào)配車輛運(yùn)送這批水果的費(fèi)用最少為______元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材曾有介紹:圓上的點(diǎn)
處的切線方程為
。我們將其結(jié)論推廣:橢圓
上的點(diǎn)
處的切線方程為
,在解本題時(shí)可以直接應(yīng)用。已知,直線
與橢圓
有且只有一個(gè)公共點(diǎn).
(1)求的值;
(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓
上的兩點(diǎn)
、
分別作該橢圓的兩條切線
、
,且
與
交于點(diǎn)
。當(dāng)
變化時(shí),求
面積的最大值;
(3)在(2)的條件下,經(jīng)過點(diǎn)作直線
與該橢圓
交于
、
兩點(diǎn),在線段
上存在點(diǎn)
,使
成立,試問:點(diǎn)
是否在直線
上,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的兩個(gè)焦點(diǎn)為
、
,P為該雙曲線上一點(diǎn),滿足
,P到坐標(biāo)原點(diǎn)O的距離為d,且
,則
________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,且
,
(
).
(1)計(jì)算,
,
,
,并求數(shù)列
的通項(xiàng)公式;
(2)若數(shù)列滿足
,求證:數(shù)列
是等比數(shù)列;
(3)由數(shù)列的項(xiàng)組成一個(gè)新數(shù)列
:
,
,
,
,
,設(shè)
為數(shù)列
的前
項(xiàng)和,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,
,
為垂足,
在
上,將
沿
折起,使點(diǎn)
到點(diǎn)
的位置,連
,且
,如圖2.
(1)求證:平面
;
(2)求鈍二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)
到定點(diǎn)
的距離與它到直線
的距離相等.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)設(shè)動(dòng)直線與曲線
相切于點(diǎn)
,與直線
相交于點(diǎn)
.
證明:以為直徑的圓恒過
軸上某定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com