日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=+ax2+bx+5,記f(x)的導(dǎo)數(shù)為f′(x).
          (I)若曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為3,且時(shí),y=f(x)有極值,求函數(shù)f(x)的解析式;
          (II)在(I)的條件下,求函數(shù)f(x)在[-4,1]上的最大值和最小值;
          (III)若關(guān)于x的方程f’(x)=0的兩個(gè)實(shí)數(shù)根為α、β,且1<α<β<2試問(wèn):是否存在正整數(shù)n,使得?說(shuō)明理由.
          【答案】分析:(I)求出導(dǎo)函數(shù),利用導(dǎo)數(shù)在切點(diǎn)處的值為切線斜率及導(dǎo)數(shù)在極值點(diǎn)處的值為0,列出方程組,求出a,b.
          (II)將a,b的值代入導(dǎo)函數(shù),令導(dǎo)函數(shù)為0求出根,列出x,f′(x),f(x)的變化情況的表格,求出最值;
          (III)先將二次方程用α,β表示出f(x),利用二次方程的實(shí)根分布得到f'(1)>0,f'(2)>0,利用基本不等式求出f′(1)•f′(2)的范圍,判斷出f′(1),f′(2)的范圍.
          解答:解:f'(x)=3x2+2ax+b(2分)
          (I)由題意,得

          所以,f(x)=x3+2x2-4x+5(4分)
          (II)由(I)知,f'(x)=3x2+4x-4=(x+2)(3x-2),
          令f'(x)=0,得

          ∴f(x)在[-4,1]上的最大值為13,最小值為-11.(10分)
          (III)∵f'(x)=3(x-α)(x-β),∴f'(1)>0,f'(2)>0
          f'(1)?f'(2)=9(1-α)(1-β)(2-α)(2-β)
          =9(α-1)(β-1)(2-α)(2-β)=9(α-1)(2-α)(β-1)(2-β)
          =
          ,所以存在n1=1或2,使
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)在極值點(diǎn)處的值是0、考查導(dǎo)數(shù)在切點(diǎn)處的值是切線的斜率、考查利用導(dǎo)數(shù)求函數(shù)的最值的步驟、考查二次方程的實(shí)根分布、考查基本不等式.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
          (1)求函數(shù)f(x)的最小正周期;
          (2)若函數(shù)y=f(2x+
          π
          4
          )
          的圖象關(guān)于直線x=
          π
          6
          對(duì)稱,求φ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
          (1)求x<0,時(shí)f(x)的表達(dá)式;
          (2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=aInx-ax,(a∈R)
          (1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
          1
          x

          (2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
          m
          2
          ]
          ,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
          1
          f(n)
          }
          的前n項(xiàng)和為Sn,則S2010的值為( 。
          A、
          2011
          2012
          B、
          2010
          2011
          C、
          2009
          2010
          D、
          2008
          2009

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案