日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知F1、F2分別是橢圓=1(a>b>0)的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,點B也在橢圓上,且滿足=0(O為坐標(biāo)原點),·=0,若橢圓的離心率等于,則直線AB的方程是(  )

          (A)y=x  (B)y=-x

          (C)y=-x  (D)y=x

          A.設(shè)A(x1,y1),因為=0,所以

          B(-x1,-y1),=(c-x1,-y1),=(2c,0),

          又因為·=0,所以(c-x1,-y1)·(2c,0)=0,即x1=c,代入橢圓方程得y1,因為離心率e=,所以,a=c,b=c,A(c,),所以直線AB的方程是y=x.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
          x25
          +y2=1
          的左、右焦點F1,F(xiàn)2關(guān)于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
          (Ⅰ)求圓C的方程;
          (Ⅱ)設(shè)過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當(dāng)ab最大時,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•青島二模)已知F1、F2分別是雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)的左、右焦點,P為雙曲線右支上的一點,
          PF2
          F1F2
          ,且|
          PF1
          |=
          2
          |
          PF2
          |
          ,則雙曲線的離心率為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知F1,F(xiàn)2分別是雙曲線
          x2
          a2
          -
          y2
          b2
          =1 (a>0, b>0)
          的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點,且橢圓C的離心率e=
          1
          2
          ,F(xiàn)1也是拋物線C1:y2=-4x的焦點.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點F2的直線l交橢圓C于D,E兩點,且2
          DF2
          =
          F2E
          ,點E關(guān)于x軸的對稱點為G,求直線GD的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知F1,F(xiàn)2分別是雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的左,右焦點,P是雙曲線的上一點,若
          PF1
          PF2
          =0
          |
          PF1
          |•|
          PF2
          |=3ab
          ,則雙曲線的離心率是
           

          查看答案和解析>>

          同步練習(xí)冊答案