【題目】在四棱錐P﹣ABCD中, =(4,﹣2,3),
=(﹣4,1,0),
(﹣6,2,﹣8),則該四棱錐的高為 .
【答案】2
【解析】解:四棱錐P﹣ABCD中, =(4,﹣2,3),
=(﹣4,1,0),
(﹣6,2,﹣8),
設(shè)平面ABCD的法向量為 =(x,y,z),
則 ,
可得 ,
不妨令x=3,則y=12,z=4,
可得 =(3,12,4);
則 =(﹣6,2,﹣8)在平面ABCD上的射影就是這個四棱錐的高h,
所以h=| ||cos<
,
>|=|
|=
=2;
所以該四棱錐的高為2.
所以答案是:2.
【考點精析】解答此題的關(guān)鍵在于理解棱錐的結(jié)構(gòu)特征的相關(guān)知識,掌握側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)既有一個極小值又有一個極大值,求
的取值范圍;
(3)若存在,使得當
時,
的值域是
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某老師對全班名學(xué)生學(xué)習(xí)積極性和參加社團活動情況進行調(diào)查,統(tǒng)計數(shù)據(jù)如下所示:
參加社團活動 | 不參加社團活動 | 合計 | |
學(xué)習(xí)積極性高 | |||
學(xué)習(xí)積極性一般 | |||
合計 |
(1)請把表格數(shù)據(jù)補充完整;
(2)若從不參加社團活動的人按照分層抽樣的方法選取
人,再從所選出的
人中隨機選取兩人作為代表發(fā)言,求至少有一個學(xué)習(xí)積極性高的概率;
(3)運用獨立性檢驗的思想方法分析:請你判斷是否有的把握認為學(xué)生的學(xué)習(xí)積極性與參與社團活動由關(guān)系?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:函數(shù)f(x)= (a>0,且a≠1)在R上為單調(diào)遞減函數(shù),命題q:x∈[0,
],x2﹣a≤0恒成立.
(1)求命題q真時a的取值范圍;
(2)若命題p∧q為假,p∨q為真,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,橢圓
:
(
)的離心率是
,拋物線
:
的焦點
是
的一個頂點.
(1)求橢圓的方程;
(2)設(shè)是
上動點,且位于第一象限,
在點
處的切線
與
交于不同的兩點
,
,線段
的中點為
,直線
與過
且垂直于
軸的直線交于點
.
(i)求證:點在定直線上;
(ii)直線與
軸交于點
,記
的面積為
,
的面積為
,求
的最大值及取得最大值時點
的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,四邊形
是菱形,
,又
平面
,
點是棱
的中點,
在棱
上,且
.
(1)證明:平面平面
;
(2)若平面
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若m=1,求函數(shù)f(x)的定義域.
(2)若函數(shù)f(x)的值域為R,求實數(shù)m的取值范圍.
(3)若函數(shù)f(x)在區(qū)間 上是增函數(shù),求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com