日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線W上的動(dòng)點(diǎn)M到點(diǎn)F(1,0)的距離等于它到直線x=-1的距離.過點(diǎn)P(-1,0)任作一條直線l與曲線W交于不同的兩點(diǎn)A、B,點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為C.
          (Ⅰ)求曲線W的方程;
          (Ⅱ)求證
          FC
          FB
          (λ∈R)
          ;
          (Ⅲ)求△PBC面積S的取值范圍.
          分析:(Ⅰ)由題知,曲線W是以F(1,0)為焦點(diǎn),以直線x=-1準(zhǔn)線的拋物線,由此可求出曲線W的方程.
          (Ⅱ)因?yàn)橹本l與曲線W交于A、B兩點(diǎn),所以l的斜率k存在,設(shè)直線l的方程為y=k(x+1),
          y=k(x+1)
          y2=4x
          得,k2x2+(2k2-4)x+k2=0.再由根的判別式和根與系數(shù)的關(guān)系進(jìn)行求解.
          (Ⅲ)由題意S=
          1
          2
          |PF|•|y1+y2|
          =|k(x1+x2+2)|=|k(
          4-2k2
          k2
          +2)|
          =
          4
          |k|
          ,再由|k|<1且k≠0,可以求出S的取值范圍.
          解答:精英家教網(wǎng)解:(Ⅰ)由題知,曲線W是以F(1,0)為焦點(diǎn),以直線x=-1準(zhǔn)線的拋物線,
          所以曲線W的方程為y2=4x.(2分)
          (Ⅱ)因?yàn)橹本l與曲線W交于A、B兩點(diǎn),所以l的斜率k存在,且k≠0
          設(shè)直線l的方程為y=k(x+1),
          y=k(x+1)
          y2=4x
          得,k2x2+(2k2-4)x+k2=0.(4分)
          因?yàn)橹本l與曲線W交于A、B兩點(diǎn),
          所以k≠0,△=4(k2-2)2-4k4>0,即|k|<1且k≠0.
          設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),
          x1+x2=
          4-2k2
          k2
          ,x1x2=1,點(diǎn)C的坐標(biāo)為(x1,-y1),y1=k(x1+1),y2=k(x2+1).
          所以
          FC
          =(x1-1,-y1)
          ,
          FB
          =(x2-1,y2)
          .(8分)
          又因?yàn)椋▁1-1)y2-(x2-1)(-y1
          =(x1-1)k(x2+1)+(x2-1)k(x1+1)
          =k(2x1x2-2)=0,
          所以
          FC
          FB
          .(10分)
          (Ⅲ)由題意S=
          1
          2
          |PF|•|y1+y2|
          (12分)
          =|k(x1+x2+2)|
          =|k(
          4-2k2
          k2
          +2)|

          =
          4
          |k|
          .(13分)
          因?yàn)閨k|<1且k≠0,所以S的取值范圍是(4,+∞).(14分)
          點(diǎn)評(píng):本題考查圓錐曲線和直線的位置關(guān)系和應(yīng)用,解題時(shí)要認(rèn)真審題,注意根的判別式和根與系數(shù)的關(guān)系的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•青島一模)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)C滿足:△ABC的周長為2+2
          2
          ,記動(dòng)點(diǎn)C的軌跡為曲線W.
          (Ⅰ)求W的方程;
          (Ⅱ)曲線W上是否存在這樣的點(diǎn)P:它到直線x=-1的距離恰好等于它到點(diǎn)B的距離?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
          (Ⅲ)設(shè)E曲線W上的一動(dòng)點(diǎn),M(0,m),(m>0),求E和M兩點(diǎn)之間的最大距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011屆福建廈門雙十中學(xué)高三考前熱身理數(shù)試卷 題型:解答題

          本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
          (1)(本小題滿分7分)選修4-2:矩陣與變換
          已知矩陣,向量
          (I)求矩陣的特征值和特征向量;
          (II)求的值.
          (2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
          (Ⅰ)求直線l的直角坐標(biāo)方程;
          (Ⅱ)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
          (3)(本小題滿分7分)選修4-5:不等式選講
          (Ⅰ)已知:a、b、;w.w.w.k.s.5.u.c.o.m   
          (Ⅱ)某長方體從一個(gè)頂點(diǎn)出發(fā)的三條棱長之和等于3,求其對(duì)角線長的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知曲線W上的動(dòng)點(diǎn)M到點(diǎn)F(1,0)的距離等于它到直線x=-1的距離.過點(diǎn)P(-1,0)任作一條直線l與曲線W交于不同的兩點(diǎn)A、B,點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為C.

          (1)求曲線W的方程;

          (2)求證:(λ∈R);

          (3)求△PBC面積S的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008年北京市朝陽區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

          已知曲線W上的動(dòng)點(diǎn)M到點(diǎn)F(1,0)的距離等于它到直線x=-1的距離.過點(diǎn)P(-1,0)任作一條直線l與曲線W交于不同的兩點(diǎn)A、B,點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為C.
          (Ⅰ)求曲線W的方程;
          (Ⅱ)求證;
          (Ⅲ)求△PBC面積S的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案