日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 給出以下四個結(jié)論:
          (1)若關(guān)于x的方程在x∈(0,1)沒有實(shí)數(shù)根,則k的取值范圍是k≥2
          (2)曲線與直線y=k(x-2)+4有兩個交點(diǎn)時,實(shí)數(shù)k的取值范圍是
          (3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),則3b-2a>1;
          (4)若將函數(shù)的圖象向右平移ϕ(ϕ>0)個單位后變?yōu)榕己瘮?shù),則ϕ的最小值是,其中正確的結(jié)論是:   
          【答案】分析:根據(jù)方程根與函數(shù)零點(diǎn)的關(guān)系,利用圖象法,易判斷(1)的真假;先確定曲線的性質(zhì),然后結(jié)合圖形確定臨界狀態(tài),結(jié)合直線與圓相交的性質(zhì),可解得k的取值范圍,從而判斷(2)的真假.根據(jù)平面點(diǎn)與直線的位置關(guān)系,可以求出a,b滿足的不等式,可判斷(3)的真假;根據(jù)正弦型函數(shù)的對稱性,及函數(shù)圖象的平移變換,可判斷(4)的真假,進(jìn)而得到答案.
          解答:解:(1)若關(guān)于x的方程 在x∈(0,1)沒有實(shí)數(shù)根,則k的取值范圍是k≤0,故(2)錯誤;
          對于(2),可化為x2+(y-1)2=4,y≥1,所以曲線為以(0,1)為圓心,2為半徑的圓y≥1的部分.
          直線y=k(x-2)+4過定點(diǎn)p(2,4),由圖知,當(dāng)直線經(jīng)過A(-2,1)點(diǎn)時恰與曲線有兩個交點(diǎn),順時針旋轉(zhuǎn)到與曲線相切時交點(diǎn)邊為一個.
          且kAP==,由直線與圓相切得d==2,解得k=
          則實(shí)數(shù)k的取值范圍為 ,故正確;
          對于(3),點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),則2a-3b+1<0,故(3)正確;
          (4)若將函數(shù) 的圖象向右平移ϕ(ϕ>0)個單位后變?yōu)榕己瘮?shù),則φ=kπ+,k∈N,當(dāng)k=0時,ϕ的最小值是 ,故(4)正確;
          故答案為:(2)、(3)、(4).
          點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)圖象的平移變換,函數(shù)的值域,簡單線性規(guī)劃的應(yīng)用,直線與圓相交的性質(zhì)等,其中熟練掌握相應(yīng)基礎(chǔ)知識點(diǎn)的熟練應(yīng)用是解答本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          給出以下四個結(jié)論:
          (1)函數(shù)f(x)=
          x-1
          x+1
          的對稱中心是(-1,-1);
          (2)若關(guān)于x的方程x-
          1
          x
          +k=0
          在x∈(0,1)沒有實(shí)數(shù)根,則k的取值范圍是k≥2
          (3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),則3b-2a>1;
          (4)若將函數(shù)f(x)=sin(2x-
          π
          3
          )
          的圖象向右平移?(?>0)個單位后變?yōu)榕己瘮?shù),則?的最小值是
          π
          12
          其中正確的結(jié)論是:
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,角A、B、C的對邊分別為a、b、c,AH為BC邊上的高,給出以下四個結(jié)論:
          AH
          BC
          =0
          ;②
          AB
          AH
          =c•sinB
          ;③
          BC
          •(
          AC
          -
          AB
          )
          =b2+c2-2bc•cosA;④
          AH
          •(
          AB
          +
          BC
          )=
          AH
          AB
          .其中所有正確結(jié)論的序號是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          △ABC中,角A、B、C所對邊分別為a、b、c,AH為BC邊上的高,給出以下四個結(jié)論:
          ①若a=1,b=
          3
          ,則“A=
          π
          6
          ”是“B=
          π
          3
          ”成立的充分不必要條件;
          AH
          •(
          AC
          -
          AB
          )=0
          ;
          BC
          •(
          AB
          -
          AC
          )=b2+c2-2bccosA
          ;
          AH
          •(
          AB
          +
          BC
          )=
          AH
          AB
          ,
          其中所有真命題的序號是
          ②④
          ②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x),g(x)的定義域都是D,又h(x)=f(x)+g(x).若f(x),g(x)的最大值分別是M、N,最小值分別是m、n,給出以下四個結(jié)論:
          (1)h(x)的最大值是M+N;
          (2)h(x)的最小值是m+n;
          (3)h(x)的值域是{y|m+n≤y≤M+N};
          (4)h(x)的值域是{y|m+n≤y≤M+N}的一個子集.
          則正確結(jié)論的個數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出以下四個結(jié)論:
          ①函數(shù)f(x)=
          x-1
          2x+1
          的對稱中心是(-
          1
          2
          ,-
          1
          2
          )

          ②若不等式mx2-mx+1>0對任意的x∈R都成立,則0<m<4;
          ③已知點(diǎn)P(a,b)與點(diǎn)Q(l,0)在直線2x-3y+1=0兩側(cè),則3b-2a>1;
          ④若將函數(shù)f(x)=sin(2x-
          π
          3
          )
          的圖象向右平移φ(φ>0)個單位后變?yōu)榕己瘮?shù),則φ的最小值是
          π
          12

          其中正確的結(jié)論是:
           

          查看答案和解析>>

          同步練習(xí)冊答案