日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)多面體ABCDEF,已知AB∥CD∥EF,平面ABCD⊥平面ADE,其中△ADE是以AD為斜邊的等腰直角三角形,點G為BC邊中點.若∠ADC=120°,AD=AB=2,CD=4,EF=3.
          (1)求證:FG⊥平面ABCD;
          (2)求二面角F-BD-C的大。

          【答案】分析:(1)取AD邊中點H,利用面ADE⊥面ABCD,證明EH⊥面ABCD,連接GH,可證四邊形EFGH為平行四邊形,從而可得結(jié)論;
          (2)解法一:先證明∠FBG為二面角F-BD-C的平面角,再在Rt△FGB中,可求二面角大小為30°;
          解法二:建立空間坐標系,確定面BDC的法向量,面BDF的法向量,利用向量的夾角公式,可得結(jié)論.
          解答:(1)證明:取AD邊中點H,在等腰直角三角形ADE中有EH⊥AD
          又面ADE⊥面ABCD,∴EH⊥面ABCD,
          連接GH,由于AB∥CD∥EF,且AB=2,CD=4
          ∴在梯形ABCD中,HG∥AB且HG=3,∴HG∥EF且HG=EF,
          ∴四邊形EFGH為平行四邊形
          ∴FG∥EH且FG=EH
          ∴FG⊥面ABCD…(5分)
          (2)解法一:在梯形ABCD中,∠ADC=120°,∴∠DAB=60°
          又AB=AD=2,∴∠ADB=60°且BD=2,
          ∴在△BDC中,BD=2,CD=4,∠BDC=60°,∴BD⊥BC,
          又由(1)知FG⊥面ABCD,而FG?面FBC,∴面FBC⊥面ABCD
          ∴BD⊥面FBC,∴∠FBG為二面角F-BD-C的平面角.…(10分)
          而在Rt△FGB中,,∴∠FBG=30°,∴所求二面角大小為30°…(12分)
          解法二:建立如圖所示的空間坐標系,A(1,0,0),D(-1,0,0),E(0,0,1),,HG=3,∠DHG=60°,∴…(7分)
          ∴面BDC的法向量
          令面BDF的法向量,則
          令y=-1,∴,…(10分)  
          為θ,則,θ=30°
          ∴二面角大小為30°.…(12分)
          點評:本題考查線面垂直,考查面面角,考查利用空間向量解決空間角問題,確定平面的法向量是關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)設(shè)多面體ABCDEF,已知AB∥CD∥EF,平面ABCD⊥平面ADF,△ADF是以AD為斜邊的等腰直角三角形,若∠ADC=120°,AD=2,AB=2,CD=4,EF=3,G為BC的中點.
          (1)求證:EG∥平面ADF;
          (2)求直線DE與平面ABCD所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•安慶模擬)設(shè)多面體ABCDEF,已知AB∥CD∥EF,平面ABCD⊥平面ADE,其中△ADE是以AD為斜邊的等腰直角三角形,點G為BC邊中點.若∠ADC=120°,AD=AB=2,CD=4,EF=3.
          (1)求證:FG⊥平面ABCD;
          (2)求二面角F-BD-C的大。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)設(shè)多面體ABCDEF,已知AB∥CD∥EF,平面ABCD⊥平面ADF,其中ADF是以AD為斜邊的等腰直角三角形,設(shè)G為BC的中點,若∠ADC=120°,AD=AB=2,CD=4,EF=3.
          (1)求證:EG∥平面ADF.(2)求二面角B-DE-G的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設(shè)多面體ABCDEF,已知AB∥CD∥EF,平面ABCD⊥平面ADF,其中ADF是以AD為斜邊的等腰直角三角形,設(shè)G為BC的中點,若∠ADC=120°,AD=AB=2,CD=4,EF=3.
          (1)求證:EG∥平面ADF.(2)求二面角B-DE-G的余弦值.

          查看答案和解析>>

          同步練習冊答案