(本小題滿分12分)如圖, 在直角梯形

中,

∥

點

分別是

的中點,現(xiàn)將

折起,使

,
(1)求證:

∥平面

;
(2)求點

到平面

的距離.

.解(1)連結AC,

底面ABCD是正方形,

AC交BD于點F,且F是AC中點
又點E為PC中點,

EF∥PA,


∥平面PAD -------------5分
(2)設點A到平面PBC的距離為h。

PD

底面ABCD,

PD

BC,
又DC

BC,DC

PC=D,

BC

面PDC,

BC

PC.
又由PD

DC,PD=DC=2,得PC=

,


從而

--------------------8分
另一方面,由PD

底面ABCD,AB

BC,且PD=AB=BC=2,得

而

,從而得:

,


即點A到平面PBC的距離為

. ----------12分


試題分析:(1)欲證EF∥平面APG,根據(jù)直線與平面平行的判定定理可知只需證AP與平面EFG內一直線平行即可,取AD中點M,連接FM、MG,由條件知EF∥DC∥MG,則E、F、M、G四點共面,再根據(jù)三角形中位線定理知MF∥PA,滿足定理所需條件;
(2)利用等體積法來表示得到高度問題。
點評:解決該試題的關鍵是通過利用三就愛哦行的中位線來得到平行線,然后借助于線線平行來得到線面平行的證明。同時利用等體積法求解高度問題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖幾何體中,四邊形

為矩形,

,

,

,

,

.

(1)若

為

的中點,證明:

面

;
(2)求二面角

的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在空間直角坐標系中,點

與點

的距離為
_____.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在正三棱柱

中,已知

,

,則異面直線

和

所成角的正弦值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設O-ABC是四面體,G
1是△ABC的重心,G是OG
1上的一點,且OG=3GG
1,若

=x

+y

+z

,則(x,y,z)為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
點A(x,2,3)與點B(-1,y,z)關于坐標平面yOz對稱,則x=_____,y=______,z=______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
一個多面體的直觀圖、正(主)視圖、側(左)視圖如圖1和圖2所示,其中正(主)視圖、側(左)視圖均為邊長為

的正方形.
(Ⅰ)請在圖2指定的位置畫出多面體的俯視圖;
(Ⅱ)若多面體底面對角線AC、BD交于點O,E為線段AA
1的中點,求證:OE∥平面A
1C
1C;
(Ⅲ)求該多面體的表面積.


查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設

、

是平面直角坐標系(坐標原點為

)內分別與

軸、

軸正方向相同的兩個單位向量,且

,

,則

的面積等于
查看答案和解析>>