已知函數(shù)
⑴若為
的極值點,求
的值;
⑵若的圖象在點
處的切線方程為
,求
在區(qū)間
上的最大值;
⑶當時,若
在區(qū)間
上不單調(diào),求
的取值范圍.
⑴或2.⑵
.
解析試題分析:⑴,∵
是
的極值點,∴
,即
,解得
或2.
⑵∵在
上.∴
,∵
在
上,∴
,又
,∴
,∴
,解得
,∴
,由
可知
和
是
的極值點.∵
,∴
在區(qū)間
上的最大值為8.
⑶因為函數(shù)在區(qū)間
不單調(diào),所以函數(shù)
在
上存在零點.而
的兩根為
,
,區(qū)間長為
,∴在區(qū)間
上不可能有2個零點.所以
,即
.∵
,∴
.又∵
,∴
.
考點:本題主要考查導(dǎo)數(shù)計算及其幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的最值。
點評:典型題,在給定區(qū)間,導(dǎo)數(shù)值非負,函數(shù)是增函數(shù),導(dǎo)數(shù)值為非正,函數(shù)為減函數(shù)。求極值的步驟:計算導(dǎo)數(shù)、求駐點、討論駐點附近導(dǎo)數(shù)的正負、確定極值、計算得到函數(shù)值比較大小。切線的斜率為函數(shù)在切點的導(dǎo)數(shù)值。(3)將條件轉(zhuǎn)化成函數(shù)在
上存在零點,體現(xiàn)了轉(zhuǎn)化與化歸思想的應(yīng)用。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)對于任意實數(shù),
恒成立,求
的最大值;
(2)若方程有且僅有一個實根,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中
為常數(shù)).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當時,設(shè)函數(shù)
的3個極值點為
,且
.
證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
,
為自然對數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若≥0對任意的
恒成立,求實數(shù)
的值;
(3)在(2)的條件下,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)在區(qū)間
上的最大、最小值;
(2)求證:在區(qū)間上,函數(shù)
的圖象在函數(shù)
的圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)在
處有極小值
。
(1)求函數(shù)的解析式;
(2)若函數(shù)在
只有一個零點,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)(e為自然對數(shù)的底數(shù)).
(Ⅰ)當時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對于任意,不等式
恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com