日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上是單調(diào)增函數(shù)的是(
          A.
          B.y=|x|﹣1
          C.y=lgx
          D.

          【答案】B
          【解析】解:對(duì)于A,y= 為定義域上的奇函數(shù),不滿足題意;
          對(duì)于B,y=|x|﹣1,是定義域R上的偶函數(shù),且在(0,+∞)上是單調(diào)增函數(shù),滿足題意;
          對(duì)于C,y=lgx是非奇非偶的函數(shù),不滿足題意;
          對(duì)于D,y= 是定義域上的偶函數(shù),但在(0,+∞)上單調(diào)遞減,不滿足題意.
          故選:B.
          【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識(shí)點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

          (1) 經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);

          (2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取個(gè),再?gòu)倪@個(gè)中隨機(jī)抽取個(gè),求這個(gè)芒果中恰有個(gè)在內(nèi)的概率.

          (3)某經(jīng)銷商來收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:

          A:所以芒果以/千克收購(gòu);

          B:對(duì)質(zhì)量低于克的芒果以/個(gè)收購(gòu),高于或等于克的以/個(gè)收購(gòu).

          通過計(jì)算確定種植園選擇哪種方案獲利更多?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}滿足b3=3,b5=9.
          (1)分別求數(shù)列{an},{bn}的通項(xiàng)公式;
          (2)設(shè)Cn= (n∈N*),求證Cn+1<Cn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ , ))的一條對(duì)稱軸為x= ,一個(gè)對(duì)稱中心為( ,0),在區(qū)間[0, ]上單調(diào).
          (1)求ω,φ的值;
          (2)用描點(diǎn)法作出y=sin(ωx+φ)在[0,π]上的圖象.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓M的方程為,直線l的方程為,點(diǎn)P在直線l上,過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B

          ,試求點(diǎn)P的坐標(biāo);

          求四邊形PAMB面積的最小值及此時(shí)點(diǎn)P的坐標(biāo);

          求證:經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=2sin(2x+ ),若將它的圖象向右平移 個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)圖象的一條對(duì)稱軸的方程為(
          A.x=
          B.x=
          C.x=
          D.x=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,則輸出的實(shí)數(shù)m的值為(

          A.9
          B.10
          C.11
          D.12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=2axx2-3ln x,其中a∈R,為常數(shù).

          (1)若f(x)在x∈[1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍;

          (2)若x=3是f(x)的極值點(diǎn),求f(x)在x∈[1,a]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,圓C的方程為(x﹣ 2+(y+1)2=9,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
          (1)求圓C的極坐標(biāo)方程;
          (2)直線OP:θ= (p∈R)與圓C交于點(diǎn)M,N,求線段MN的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案