日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•奉賢區(qū)一模)已知函數(shù) f(x)=log3(3x-1),
          (1)求函數(shù)f(x)的定義域;
          (2)求證函數(shù)f(x)在(0,+∞)內(nèi)單調(diào)遞增.
          (3)若f-1(x)是函數(shù)f(x)的反函數(shù),設(shè)F(x)=f-1(2x)-f(x),求函數(shù)F(x)的最小值及對(duì)應(yīng)的x值.
          分析:(1)利用真數(shù)大于0,結(jié)合指數(shù)函數(shù)的單調(diào)性可求;
          (2)用單調(diào)性定義證明,先任取兩個(gè)變量,且界定大小,再作差變形,通過分析,與零比較,要注意變形要到位.
          (3)先求反函數(shù),再表達(dá)出F(x)=f-1(2x)-f(x),利用基本不等式可求函數(shù)的最小值.
          解答:解:(1)函數(shù) f(x)=log3(3x-1),得:3x-1>0,∴x>0
          ∴f(x)的定義域 是(0,+∞).
          (2)設(shè)在(0,+∞)上任取x1<x2,則f(x2)-f(x1)=log3
          3x2-1
          3x1-1

          由y=3x在定義域(0,+∞)內(nèi)單調(diào)遞增得:
          3x2-1
          3x1-1
          > 1
          ,∴log3
          3x2-1
          3x1-1
          >0
          ,∴f(x2)-f(x1)>0
          ∴函數(shù)f(x)在(0,+∞)內(nèi)單調(diào)遞增(3分)
          (3)由 f(x)=log3(3x-1),得:f-1(x)=log3(3x+1),∴F(x)=f-1(2x)-f(x)=log3
          32x+1
          3x-1

          log3(3x-1+
          2
          3x-1
          +2)
          ≥log3(2
          2
           +2)

          當(dāng)x=log3(
          2
          +1)
          時(shí),F(xiàn)(x)最小值為log3(2
          2
          +2)
          點(diǎn)評(píng):本題的考點(diǎn)是函數(shù)的單調(diào)性德判斷及證明,主要考查了反函數(shù)、函數(shù)的值域以及函數(shù)與不等式相綜合的問題,考查函數(shù)與方程的綜合運(yùn)用,主要涉及了用單調(diào)性的定義證明函數(shù)的單調(diào)性以及構(gòu)造函數(shù)研究函數(shù)的性質(zhì)等問題,還考查了轉(zhuǎn)化思想和構(gòu)造轉(zhuǎn)化函數(shù)的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•奉賢區(qū)一模)若sinθ<0,且sin2θ>0,則角θ的終邊所在象限是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•奉賢區(qū)一模)已知:函數(shù)f(x)=
          x
          ax+b
          (a,b∈R,ab≠0)
          ,f(2)=
          2
          3
          ,f(x)=x
          有唯一的根.
          (1)求a,b的值;
          (2)數(shù)列{an}對(duì)n≥2,n∈N總有an=f(an-1),a1=1;求出數(shù)列{an}的通項(xiàng)公式.
          (3)是否存在這樣的數(shù)列{bn}滿足:{bn}為{an}的子數(shù)列(即{bn}中的每一項(xiàng)都是{an}的項(xiàng))且{bn}為無窮等比數(shù)列,它的各項(xiàng)和為
          1
          2
          .若存在,找出所有符合條件的數(shù)列{bn},寫出它的通項(xiàng)公式,并說明理由;若不存在,也需說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•奉賢區(qū)一模)若虛數(shù)z滿足z+
          1
          z
          ∈R
          ,則|z-2i|的取值范圍是
          [1,
          5
          )∪(
          5
          ,3]
          [1,
          5
          )∪(
          5
          ,3]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•奉賢區(qū)一模)在一個(gè)口袋里裝有5個(gè)白球和3個(gè)黑球,這些球除顏色外完全相同,現(xiàn)從中摸出3個(gè)球,至少摸到2個(gè)黑球的概率等于
          2
          7
          2
          7
           (用分?jǐn)?shù)表示).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•奉賢區(qū)一模)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1>0且S19=0,則當(dāng)Sn取得最大值時(shí)的n=
          9或10
          9或10

          查看答案和解析>>

          同步練習(xí)冊(cè)答案