日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)R),g(x)=lnx.
          (1)求函數(shù)F(x)=f(x)+g(x)的單調(diào)區(qū)間;
          (2)若關(guān)于x的方程(e為自然對數(shù)的底數(shù))只有一個實數(shù)根,求a的值.
          【答案】分析:(1)先求出求函數(shù)F(x)=f(x)+g(x)的導(dǎo)函數(shù),分情況求出導(dǎo)數(shù)為0的根進而求出函數(shù)的單調(diào)區(qū)間(注意是在定義域內(nèi)求單調(diào)區(qū)間);
          (2)先把問題轉(zhuǎn)化為只有一個實數(shù)根;再利用導(dǎo)函數(shù)分別求出等號兩端的極值,在下面畫出草圖,結(jié)合草圖即可求出結(jié)論.
          解答:(1)解:函數(shù)的定義域為(0,+∞).
          =
          ①當(dāng)△=1+4a≤0,即時,得x2+x-a≥0,則F′(x)≥0.
          ∴函數(shù)F(x)在(0,+∞)上單調(diào)遞增.(2分)
          ②當(dāng)△=1+4a>0,即時,令F′(x)=0,得x2+x-a=0,
          解得
          (。┤,則
          ∵x∈(0,+∞),∴F′(x)>0,
          ∴函數(shù)F(x)在(0,+∞)上單調(diào)遞增.(4分)
          (ⅱ)若a>0,則時,F(xiàn)′(x)<0;時,F(xiàn)′(x)>0,
          ∴函數(shù)F(x)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.
          綜上所述,當(dāng)a≤0時,函數(shù)F(x)的單調(diào)遞增區(qū)間為(0,+∞);
          當(dāng)a>0時,函數(shù)F(x)的單調(diào)遞減區(qū)間為,
          單調(diào)遞增區(qū)間為.(8分)
          (2)解:由,得,化為
          ,則
          令h′(x)=0,得x=e.
          當(dāng)0<x<e時,h′(x)>0;當(dāng)x>e時,h′(x)<0.
          ∴函數(shù)h(x)在區(qū)間(0,e)上單調(diào)遞增,在區(qū)間(e,+∞)上單調(diào)遞減.
          ∴當(dāng)x=e時,函數(shù)h(x)取得最大值,其值為.(10分)
          而函數(shù)m(x)=x2-2ex+a=(x-e)2+a-e2,
          當(dāng)x=e時,函數(shù)m(x)取得最小值,其值為m(e)=a-e2.(12分)
          ∴當(dāng),即時,方程只有一個根.(14分)
          點評:本題第一問考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間、極值、最值問題,是函數(shù)這一章最基本的知識,也是.教學(xué)中的重點和難點,學(xué)生應(yīng)熟練掌握.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)數(shù)學(xué)公式R),g(x)=lnx.
          (1)求函數(shù)F(x)=f(x)+g(x)的單調(diào)區(qū)間;
          (2)若關(guān)于x的方程數(shù)學(xué)公式(e為自然對數(shù)的底數(shù))只有一個實數(shù)根,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省湛江市徐聞中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知函數(shù)R),g(x)=lnx
          (1)求函數(shù)F(x)=f(x)+g(x)的單調(diào)區(qū)間;
          (2)若關(guān)于x的方程(e為自然對數(shù)的底數(shù))只有一個實數(shù)根,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省廣州市高三調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知函數(shù)R),g(x)=lnx.
          (1)求函數(shù)F(x)=f(x)+g(x)的單調(diào)區(qū)間;
          (2)若關(guān)于x的方程(e為自然對數(shù)的底數(shù))只有一個實數(shù)根,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省廣州市高三調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知函數(shù)R),g(x)=lnx.
          (1)求函數(shù)F(x)=f(x)+g(x)的單調(diào)區(qū)間;
          (2)若關(guān)于x的方程(e為自然對數(shù)的底數(shù))只有一個實數(shù)根,求a的值.

          查看答案和解析>>

          同步練習(xí)冊答案